Preparation of optically active derivatives of $(1,4 / 2,3,5)$ - and (1,2,3,4,5/0)-5-aminocyclopentane-1,2,3,4-tetraols: synthesis of mannostatin A and its enantiomer

Seiichiro Ogawa,* Hiroshi Kimura, Chikara Uchida and Takashi Ohashi
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, 223 Japan

Diastereoselective acylation of the 2,3-O-cyclohexanediyl derivatives of (1,4/2,3,5)- and (1,2,3,4,5/0)-5-acetamidocyclopentane-1,2,3,4-tetraols with some optically active chiral acids afforded, with moderate diastereoselectivity, the chiral monoesters useful as synthetic intermediates, from which mannostatin A and its enantiomer were synthesized.

Introduction

In recent years, several naturally occurring aminocyclopentanepolyol derivatives of biologically important, i.e. mannostatin A^{1} $(+)-1$, allosamizolin ${ }^{2}$ 2, a component of the chitinase inhibitor allosamizine, and trehalamine ${ }^{3} 3$ have been discovered, and much attention has therefore been focused on elucidation of biochemical roles of aminocyclopentanepolyol derivatives and their application as biological tools such as glycohydrolase inhibitors. ${ }^{4}$

In 1961, Angyal et al. ${ }^{5}$ reported the simple synthesis of 5 -aminocyclopentane-1,2,3,4-tetraol derivatives by basecatalysed aldol condensation of nitromethane and the dialdehyde derived from 1,2-O-cyclohexane-1,1-diyl-myo-inositol. ${ }^{6}$ According to their procedure, the 2,3-O-cyclohexane-1,1diyl derivative of (1,4/2,3,5)-5-acetamidocyclopentane-1,2,3,4tetraol ${ }^{+4}$ was obtained as the major product of the cyclization in $\sim 40 \%$ overall yield. This compound was also easily converted into the ($1,2,3,4,5 / 0$)-isomer ${ }^{5}$ via a two-step sequence in $\sim 90 \%$ overall yield. ${ }^{8}$ Therefore, these two are considered to be versatile intermediates for further transformation into a variety of aminocyclopentanepolyol derivatives of biological interest. We first succeeded in the synthesis ${ }^{9}$ of (\pm)mannostatin $\mathrm{A}(\pm)-1$ starting from the ($1,2,3,4,5 / 0$)-isomer.

Compounds 4 and 5 (see Scheme 1) have meso structures, the two hydroxy groups on $\mathrm{C}-1$ and -4 being chemically equivalent. In general, on substitution of the hydroxy groups they yielded
\dagger In this paper, nomenclature of cyclitols follows IUPAC-IUB 1973 recommendations for cyclitols. ${ }^{7}$
the monosubstituted products of racemic modification, and, therefore, optical resolution would be needed for synthesis of chiral compounds from substrate $\mathbf{4}$ or 5 . In this paper, in order to prepare protected optically active derivatives, attempts were made to envisage a diastereoselective acylation of the meso compounds 4 and 5 by using optically active acids under kinetic control. We used the readily available $(S)-(+)-$ and $(R)-(-)-O$-acetylmandelic acid, ${ }^{10}$ ethyl 2,3-O-cyclohexane-1,1-diyltartrate, ${ }^{11}$ and ($1 R, 2 S$)-2-benzamidocyclohexanecarboxylic acid. In addition, β-glucosylation of compounds 4 and 5 with 2,3,4,6-tetra-O-acetyl- α-D-glucopyranosyl bromide was carried out.

Scheme 1

Results and discussion

Preparation of optically active derivatives of ($\mathbf{1 , 4 / 2 , 3 , 5 \text {)-5- }}$ aminocyclopentane-1,2,3,4-tetraol
Treatment of compound 4 with $(S)-(+)-O$-acetylmandelic acid and dicyclohexylcarbodiimide (DCC) and 4-(dimethylamino)pyridine (DMAP) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 3 h at $-45^{\circ} \mathrm{C}$ produced a mixture (63%) of the monoesters 6 a and 7 a , and the bis-ester 8a (15%). By use of $(R)-(-)$-acid, a mixture (80%) of the monoesters 6 b and 7 bb , and the bis-ester $\mathbf{8 b}(\mathbf{2 0 \%})$ were obtained (Scheme 2). Compounds 6a and 7a could not be separated effectively by a silica gel column, but the ratio of the esters was estimated to be $\sim 4: 1$ on the basis of the ${ }^{1}$ H NMR spectral data due to the methine protons of the acid residues. On the other hand, treatment of compound 4 with ethyl hydrogen 2,3O -cyclohexane-1,1-diyl tartrate in the presence of N -methylmorpholine and MsCl in tetrahydrofuran (THF) for 24 h at $0^{\circ} \mathrm{C}$ gave a mixture of the monoesters $\mathbf{6 c}$ and $7 \mathrm{c}(41 \%)$ and the bis-ester $8 \mathrm{c}(10 \%)$. Although isomers 6 c and 7 c were not separated, the product ratio was shown to be $\sim 4: 1$ by the ${ }^{1} \mathrm{H}$ NMR spectra of the corresponding (S) - O -acetylmandelates 12c and 13c directly derivatized.

Coupling of compound 4 with 2,3,4,6-tetra-O-acetyl- α-D-

Scheme 2

12c

13c
glucopyranosyl bromide in the presence of silver trifluoromethanesulfonate (triflate), tetramethylurea and Drierite in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ yielded the mono β-glucosides $\mathbf{6 d}(31 \%)$ and $7 \mathbf{d}$ (16%), together with the bis- β-glucoside 8 d (5%). In this case, diastereoselectivity was not high, but the products were easily separated by silica gel chromatography.
Elucidation of the absolute configurations of compounds 6d and 7d were initially carried out by the conventional method. ${ }^{12}$ Thus, thiocarbonylation of compound $\mathbf{6 d}$ with 1,1'-thiocarbonyldiimidazole in 1,2-dichloroethane for 32 h at $100^{\circ} \mathrm{C}$ afforded the xanthate 14 d quantitatively. Treatment of compound 14 d with tributyltin hydride in toluene in the presence of azoisobutyronitrile (AIBN) for 30 min at reflux temperature gave the triol derivative 15d (78%), which was hydrolysed with HCl followed by acetylation to give ld-(1,2,4/3)-4-acetamido-1,2,3-tri-O-acetylcyclopentane-1,2,3-triol D-16 in 78% yield. Compound D-16 was further converted into known ($2 R$)-2-acetamido-1,4-di- O-acetylbutane-1,4-diol (R)17 in 24% overall yield by the following sequence of reactions:
O-deacetylation under Zemplén conditions, oxidation with sodium periodate, reduction with sodium boranuide, and acetylation, thereby establishing the structure as depicted in Scheme 3.

Scheme 3
Likewise, the stereochemistry of compound 7d was confirmed by transforming it into the ($2 S$)-2-aminobutane-1,4-diol derivative (S)-17 via intermediates 18d, 19d and L-16.

When the mixture of O-acetylmandelates 6a and 7a was similarly deoxygenated by the Barton procedure via the xanthates 14a and 18a, the triol derivatives 15a and 19a were isolated after chromatography in 14 and 56% yield, respectively. Hydrolysis of compounds 15a and 19a with $4 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid followed by acetylation gave tetraacetyl derivatives D-16 (97%) and L-16 (97%), respectively, establishing the absolute structures of compounds $\mathbf{6 a}$ and $7 \mathrm{7a}$. The ${ }^{1} \mathrm{H}$ NMR spectra supported the contention that the mono-ester $\mathbf{6 b}$, the enantiomer of 7a, was formed as the major product when the $(R)-(-)$-acid was employed instead. Similarly, the mixture of compounds 6 c and 7 c was converted into the triols $\mathrm{D}, \mathrm{L}-16$ via the xanthates 15 c and 19 c , revealing that compound 7 c was obtained mainly.

Preparation of optically active derivatives of ($1,2,3,4,5 / 0)-5-$ aminocyclopentane-1,2,3,4-tetraol
Similar diastereoselective acylation of all-cis compound 5 with (S)-(+)-O-acetylmandelic acid gave, after silica gel column chromatography, the mono-esters 9a (43%) and 10a (6.2%), together with the bis-ester 11a (15%). When the $(R)-(-)$-acid

20c

$21 c$
was used, compounds $9 \mathrm{~b}(7.2 \%), 10 \mathrm{~b}(54 \%)$, and $11 \mathrm{~b}(19 \%)$ were obtained as expected. Compounds 9 a and 10 b are enantiomeric.

Acylation of compound 5 with the half-ester of tartaric acid produced the bis-ester 11c (9.2%) and the mono-ester $10 \mathrm{c}(19 \%)$ contaminated with a small amount of compound $9 \mathbf{c}$. The crude compound 10 c containing isomer 9c was converted as in the case of compounds 6 c and 7 c into the respective $(S)-O$ -

Scheme 4
acetylmandelyl esters 21 c and 20 c and the ratio was estimated to be $\sim 11: 1$ based on their ${ }^{1} \mathrm{H}$ NMR spectra. On the other hand, compound 5 was treated with $(1 R, 2 S)$-2-benzamidocyclohexanecarboxylic acid in the presence of DCC and DMAP to give, after chromatography, compounds $9 \mathrm{e}(42 \%)$ and 10 e (6.4%), along with bis-ester $11 \mathrm{e}(3.7 \%)$.

Synthesis of mannostatin A(+)-1 and its enantiomer (-)-1 starting from enantiomeric monoesters 10b and 9a, respectively, has now been carried out in order not only to establish the absolute structures of substrates $\mathbf{1 0 b}$ and 9 a by correlation to that of mannostatin $(+)-1$, but also to develop a practical route to compound $(+)-1$. On treatment with trifluoromethanesulfonic anhydride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, compound $\mathbf{1 0 b}$ was converted into the triflate (Scheme 4), which was, without purification, allowed to react with an excess of potassium thioacetate in benzene in the presence of 18 -crown- 6 ether for 2 days at room temp. to give, after chromatography, the thioacetate 22b (66%) together with the elimination product 23b (17%). Compound 22b was O, S deacylated under Zemplén conditions and the product was subsequently treated with iodomethane to give the methyl sulfide d-24 quantitatively. Hydrolysis of compound D-24 with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$ followed by acetylation afforded tetra- $N, O-$ acetylmannostatin A D-25 (92\%), from which the hydrochloride D-26 and the free base $(+)-1$ were obtained quantitatively. The synthetic compounds were identical with the corresponding authentic samples \ddagger with all respects, thereby establishing the absolute structure of substrate 10b as depicted in Schemes 2 and 4. The enantiomer (-)-1 of mannostatin A was likewise prepared from compound 9a through the thioacetate 27a and the corresponding enantiomeric intermediates L-24, L-25 and L-26. Although mannostatin A has already been totally synthesized by several research groups ${ }^{13}$ independently, successful optimization of the displacement reaction of the intermediate triflate would lead our current route to be the more efficient one.

Accordingly, the absolute configurations of compounds $9 \mathrm{c}, \mathrm{e}$ and 10 c , e could be correlated to that of compound 9 b by transforming them into the common methoxymethyl ethers D,L30. Thus, compounds 9b and 10b were conventionally treated with chloromethyl methyl ether ($\longrightarrow \mathbf{2 9 b}$ and 31b) followed by O-deacylation to give the alcohols L- and D-30, respectively (Scheme 5). By similar treatment, substrates 9c and 9 e were converted into the corresponding ethers 29c and 29e, which gave compound l-30. On the other hand, compounds 10 c and 10e gave the respective ethers 31c and 31e, which gave compound $\mathrm{D}-\mathbf{3 0}$, thereby establishing the absolute structures.

\ddagger The ${ }^{1} \mathrm{H}$ NMR spectra of an authentic sample were provided by Dr H. Morishima and Prof. T. Aoyagi (see Acknowledgements section).

From consideration of the above results, the isomer 5 with all-cis configuration was shown to be a suitable substrate for diastereoselective acylation with chiral acid. Accordingly, in order to improve diastereoselectivity, attempted acylation of (1,2,3,4,5/0)-5-aminocyclopentane-1,2,3,4-tetraol derivatives, the nitrogen functions of which are acylated with some chiral acids, is under way.

Experimental

General methods

Mps were determined with a MEL-TEMP capillary melting point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded for solutions in deuteriochloroform (standard: $\mathrm{Me}_{4} \mathrm{Si}$) or deuterium oxide (standard: acetone) with a JEOL GSX-270 (270 MHz) instrument, and J values are given in Hz. IR spectra were recorded with a JASCO IR-810 spectrometer. High-resolution mass spectra were measured with a JEOL JMS-DX-302 spectrometer (EI method at 70 eV). Optical rotations were measured with a JASCO DIP-370 polarimeter, and $[\alpha]_{D}$-values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. TLC was performed on Silica Gel 60 F-254 (E. Merck, Darmstadt) with detection by charring with sulfuric acid. Column chromatography was conducted on Wakogel C-300 (Wako Junyaku Kogyo Co., Osaka, Japan; 300 mesh) or Silica Gel 60 K070 (Katayama Kagaku Kogyo Co., Osaka, Japan). Organic solutions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ or MgSO_{4} and evaporated at $<45^{\circ} \mathrm{C}$ under diminished pressure.

2,3- O-Cyclohexane-1,1-diyl derivatives $6 a$ and $7 a$ of the

 respective 1 D - and $1 \mathrm{~L}-(1,4 / 2,3,5)-5-$ acetamido-1- O-[(2S)-2acetoxy(phenyl)acetyl] cyclopentane-1,2,3,4-tetraol and (1,4/ 2,3,5)-5-acetamido-1,4-bis- O-[(2S)-2-acetoxy(phenyl)acetyl]-cyclopentane-1,2,3,4-tetraol 8aTo a solution of the 2,3-O-cyclohexane-1,1-diyl derivative ${ }^{8,9} 4$ of ($1,4 / 2,3,5$)-5-acetamido-1,2,3,4-cyclohexanetetraol (103 mg , 0.38 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ were added a catalytic amount of DMAP, (S)-(+)- O-acetylmandelic acid $(81.1 \mathrm{mg}, 0.417 \mathrm{mmol}$, 1.1 mol equiv.) and DCC ($86.2 \mathrm{mg}, 0.417 \mathrm{mmol}, 1.1 \mathrm{~mol}$ equiv.) at $-45^{\circ} \mathrm{C}$, and it was stirred for 3 h at the same temp. The reaction mixture was poured into saturated aq. NaHCO_{3} (3 cm^{3}) and then diluted with EtOAc ($30 \mathrm{~cm}^{3}$). The organic solution was washed successively with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(10 \mathrm{~cm}^{3}\right)$ and saturated aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$, and dried. Evaporation of the solvent gave crude products, which were separated by a column of silica gel (10 g) with acetone-toluene ($1: 3 \mathrm{v} / \mathrm{v}$) as eluent, to give, first, the bis-ester 8 ($(34.0 \mathrm{mg}, 14.8 \%$) as a syrup (Found: $\mathrm{C}, 63.5 ; \mathrm{H}, 6.0 ; \mathrm{N}, 2.3 . \mathrm{C}_{33} \mathrm{H}_{37} \mathrm{NO}_{11}$ requires $\mathrm{C}, 63.6 ; \mathrm{H}$, $6.0 ; \mathrm{N}, 2.3 \%) ;[\alpha]_{\mathrm{D}}^{24}+79\left(c 0.92, \mathrm{CHCl}_{3}\right) ; v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3400$ $(\mathrm{NH}), 1750(\mathrm{C}=\mathrm{O}), 1670(\mathrm{NAc})$ and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 7.50-7.35(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 5.87$ and 5.79 . [each 1 H , $2 \mathrm{~s}, 2 \times \mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}], 5.69\left(1 \mathrm{H}, \mathrm{d}, J_{5 . \mathrm{NH}} 8.7, \mathrm{NH}\right), 5.08$ (1 H, dd, $J 2.2$ and $5.3,1$ - or $4-H$), 5.03 (1 H, dd, $J 2.2$ and $5.3,4$ - or $1-\mathrm{H}), 4.50(1 \mathrm{H}, \mathrm{dd}, J 2.2$ and $6.6,2$ - or $3-\mathrm{H}), 4.44(1 \mathrm{H}, \mathrm{dd}, J 2.2$ and $6.6,3-$ or $2-\mathrm{H}$), $4.32\left(1 \mathrm{H}\right.$, ddd, $J_{1.5} 5.3, J_{4.5} 5.3, J_{5 . \mathrm{NH}} 8.7$, $5-\mathrm{H}), 2.20,2.18$ and $1.82($ each $3 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{Ac}$) and $1.66-1.30$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}$).
The second fraction gave an inseparable mixture of the mono-esters 6a and $7 \mathrm{a}(\sim 1: 4)(103 \mathrm{mg}, 62.5 \%)$ as a syrup (Found: C, 61.8; H, 6.7; N, 3.1. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{8}$ requires C , 61.7 ; $\mathrm{H}, 6.5 ; \mathrm{N}, 3.1 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3300(\mathrm{OH}$ and NH$), 1750$ $(\mathrm{C}=\mathrm{O}), 1680(\mathrm{NAc})$ and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) for the minor compound 6a: $5.83[1 \mathrm{H}, \mathrm{s}$, $\mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}$], 2.20 and 1.98 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac}$), for the major compound 7a: $7.60-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.47\left(1 \mathrm{H}, \mathrm{d}, J_{5 . \mathrm{NH}}\right.$ $3.7, \mathrm{NH}$), 5.96 [1 H, s, $\mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}], 5.07$ ($1 \mathrm{H}, \mathrm{dd}, J_{1.2} 4.8$, $\left.J_{1,5} 8.8,1-\mathrm{H}\right), 4.64\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 4.8, J_{2,3} 7.3,2-\mathrm{H}\right), 4.46(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{2,3} 7.3, J_{3,4} 2.9,3-\mathrm{H}\right), 4.00\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4} 2.9, J_{4,5} 7.0,4-\mathrm{H}\right), 3.76$
(1 H, ddd, $J_{1,5} 8.8, J_{4.5} 7.0, J_{5, \mathrm{NH}} 3.7,5-\mathrm{H}$) and 2.20 and 1.92 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac}$). The product ratio of compounds 6 a and 7a was roughly estimated based on the signals ($\delta 5.83$ and 5.96) due to the methine protons of the acid residues.

2,3- O-Cyclohexane-1,1-diyl derivatives 6 b and 7 b of the

 respective 1 D - and $1 \mathrm{~L}-(1,4 / 2,3,5)-5$-acetamido-1- O-[($2 R$)-2acetoxy(phenyl)acetyl] cyclopentane-1,2,3,4-tetraol and (1,4/ 2,3,5)-5-acetamido-1,4-bis-O-[(2R)-2-acetoxy(phenyl)acetyl]-cyclopentane-1,2,3,4-tetraol 8bThe diol $4(24.8 \mathrm{mg}, 0.0914 \mathrm{mmol})$ was treated with $(R)-(-)-O-$ acetylmandelic acid, as in the preparation of compounds 6 a and 7a, to give, first, the bis-ester $\mathbf{8 b}(11.5 \mathrm{mg}, 20.2 \%$) as a syrup (Found: C, 63.3; H, 6.2; N, 2.4. $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{NO}_{11}$ requires $\mathrm{C}, 63.6$; $\mathrm{H}, 6.0 ; \mathrm{N}, 2.3 \%) ;[\alpha]_{\mathrm{D}}^{24}-74\left(c 0.94, \mathrm{CHCl}_{3}\right)$.

The second fraction gave an inseparable mixture (32.5 mg , 79.5%) of two mono-esters $\mathbf{6 b}$ and $7 \mathrm{~b}(\sim 4: 1$) as a syrup (Found: C, 61.8; H, 6.9; N, 2.8. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{8}$ requires $\mathrm{C}, 61.7 ; \mathrm{H}, 6.5$; $\mathrm{N}, 3.1 \%$). The ${ }^{1} \mathrm{H}$ NMR spectra of products $\mathbf{8 b}$, and $\mathbf{6 b}$ and $7 \mathbf{b}$, were substantially superposable on those of the respective enantiomers.

2,3- O-Cyclohexane-1,1-diyl derivatives 6 c and 7 c of the

 respective 1 D - and $1 \mathrm{~L}-(1,4 / 2,3,5)-5$-acetamido-1-O-[($2 R, 3 R$)-2,3-(cyclohexane-1,1-diyldioxy)-3-ethoxycarbonylpropanoyl]-cyclopentane-1,2,3,4-tetraol and (1,4/2,3,5)-5-acetamido-1,4-bis-O-[($2 R, 3 R)$-2,3-(cyclohexane-1,1-diyldioxy)-3-ethoxy-carbonylpropanoyl]cyclopentane-1,2,3,4-tetraol 8cTo a solution of the diol $4(54.5 \mathrm{mg}, 0.201 \mathrm{mmol})$ in THF $\left(1 \mathrm{~cm}^{3}\right)$ were added $\mathrm{MsCl}\left(17 \mathrm{~mm}^{3}, 0.221 \mathrm{mmol}, 1.1 \mathrm{~mol}\right.$ equiv.), N methylmorpholine ($55 \mathrm{~mm}^{3}, 0.502 \mathrm{mmol}, 2.5 \mathrm{~mol}$ equiv.), a catalytic amount of DMAP, and ethyl hydrogen 2,3-O-cyclo-hexane-1,1-diyltartrate ($51.9 \mathrm{mg}, 0.201 \mathrm{mmol}, 1.0 \mathrm{~mol}$ equiv.) at $-15^{\circ} \mathrm{C}$. The reaction mixture was stirred for 24 h at $0^{\circ} \mathrm{C}$. A portion ($2 \mathrm{~cm}^{3}$) of MeOH was added to the mixture, which was then diluted with $\mathrm{EtOAc}\left(30 \mathrm{~cm}^{3}\right)$ and washed successively with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(10 \mathrm{~cm}^{3}\right)$, saturated aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and water ($10 \mathrm{~cm}^{3}$), and dried. Evaporation of the mixture gave crude products, which were separated on a column of silica gel $(4 \mathrm{~g})$ with acetone-toluene ($1: 6, \mathrm{v} / \mathrm{v}$) as eluent, to give, first, the bis-ester $8 \mathrm{c}(14.3 \mathrm{mg}, 9.5 \%$) as a syrup (Found: C, $59.0 ; \mathrm{H}, 7.4 ; \mathrm{N}$, 1.9. $\mathrm{C}_{37} \mathrm{H}_{53} \mathrm{NO}_{15}$ requires $\mathrm{C}, 59.1 ; \mathrm{H}, 7.1 ; \mathrm{N}, 1.9 \%$); $[\alpha]_{\mathrm{D}}^{27}-21$ (c $0.92, \mathrm{CHCl}_{3}$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1760(\mathrm{C}=\mathrm{O}), 1680$ (NAc) and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.87\left(1 \mathrm{H}, \mathrm{d}, J_{5, \mathrm{NH}}\right.$ $8.8, \mathrm{NH}$), 5.17 and 5.16 ($2 \mathrm{H}, 2 \mathrm{br} \mathrm{dd}, J 6.2$ and $6.6,1$ - and $4-\mathrm{H}$), $4.88,4.86,4.83$ and 4.81 (each $1 \mathrm{H}, 4 \mathrm{~d}, J 4.4,2^{\prime}-, 3^{\prime}-2^{\prime \prime}$ - and $\left.3^{\prime \prime}-\mathrm{H}\right), 4.64$ and $3.81(2 \mathrm{H}, \mathrm{s}, 2-$ and $3-\mathrm{H}), 4.58(1 \mathrm{H}$, br ddd, $J_{5, \mathrm{NH}} 8.8, J 6.2$ and $\left.6.6,5-\mathrm{H}\right), 4.27\left(2 \mathrm{H}, \mathrm{q}, J 7.0, \mathrm{OCH} \mathrm{H}_{2} \mathrm{Me}\right), 4.26$ $\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 7.0, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.92(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.75-1.35(30 \mathrm{H}$, $\left.\mathrm{m}, 3 \times \mathrm{C}_{6} \mathrm{H}_{10}\right)$ and $1.32\left(6 \mathrm{H}, \mathrm{t}, J 7.0,2 \times \mathrm{OCH}_{2} \mathrm{Me}\right)$.
The second fraction gave an inseparable mixture $(41.8 \mathrm{mg}$, 40.7%) of the mono-esters 6 c and $7 \mathrm{c}(\sim 4: 1$) as a syrup (Found: $\mathrm{C}, 58.4 ; \mathrm{H}, 7.7 ; \mathrm{N}, 2.8 . \mathrm{C}_{25} \mathrm{H}_{37} \mathrm{NO}_{10}$ requires C, 58.7 ; $\mathrm{H}, 7.3$; $\mathrm{N}, 2.7 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{OH}$ and NH$), 1760(\mathrm{C}=\mathrm{O})$, $1680(\mathrm{NAc})$ and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ for the major compound: $6.68\left(1 \mathrm{H}, \mathrm{d}, J_{5 . \mathrm{NH}} 2.9, \mathrm{NH}\right), 5.11\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 4.0\right.$, $J_{1.5} 8.1,1-\mathrm{H}$), 4.86 and 4.76 (each $1 \mathrm{H}, 2 \mathrm{~d}, J_{2^{\prime}, 3^{\prime}} 5.1,2^{\prime}$ - and $\left.3^{\prime}-\mathrm{H}\right), 4.68\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 4.0, J_{2,3} 7.1,2-\mathrm{H}\right), 4.52\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3}\right.$ 7.1, $\left.J_{3,4} 1.8,3-\mathrm{H}\right), 4.28\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.12-4.03$ (1 $\mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.07-3.98(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.01(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.73-1.35$ $\left(20 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}_{6} \mathrm{H}_{10}\right)$ and $1.33\left(3 \mathrm{H}, \mathrm{t}, J 7.2, \mathrm{OCH}_{2} \mathrm{Me}\right)$.

2,3-O-Cyclohexane-1,1-diyl derivatives 12 c and 13 c of the respective 1 L - and $1 \mathrm{D}-(1,4 / 2,3,5)-5-$ acetamido-1- O-[(2S)-2-acetoxy(phenyl)acetyl]-4-O-[($2 R, 3 R$)-2,3-O-(cyclohexane-1,1-diyldioxy)-3-ethoxycarbonylpropanoyl] cyclopentane-1,2,3,4tetraol
 To a solution of the mixture ($36.9 \mathrm{mg}, 0.0721 \mathrm{mmol}$) of the

alcohols 6 c and $7 \mathrm{c}(\sim 4: 1)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ were added a catalytic amount of DMAP, $(S)-(+)-O$-acetylmandelic acid ($21.0 \mathrm{mg}, 0.108 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv.), and DCC (16.4 mg , $0.0795 \mathrm{mmol}, 1.1 \mathrm{~mol}$ equiv.) at $-15^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at the same temperature. $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture, which was then diluted with EtOAc ($30 \mathrm{~cm}^{3}$) and washed successively with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$ $\left(10 \mathrm{~cm}^{3}\right)$, saturated aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and water $\left(10 \mathrm{~cm}^{3}\right)$, and dried. Evaporation of the mixture gave crude products, which were purified by preparative TLC (PLC) with ethanoltoluene ($1: 10, \mathrm{v} / \mathrm{v}$) as developer to give a mixture $(36.3 \mathrm{mg}$, 73.2%) of the acetylmandelates 12 c and $13 \mathrm{c}(\sim 4: 1)$ as a syrup (Found: $\mathrm{C}, 61.0 ; \mathrm{H}, 6.8 ; \mathrm{N}, 2.0 . \mathrm{C}_{35} \mathrm{H}_{45} \mathrm{NO}_{13}$ requires C, 61.1; $\mathrm{H}, 6.6 ; \mathrm{N}, 2.0 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3400(\mathrm{NH}), 1750(\mathrm{C}=\mathrm{O}), 1680$ (NAc) and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) for the major compound 12c: 5.89 [1 H, s, $\mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}], 2.19$ and 1.81 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac}$); for the minor compound 13 c : 5.91 [$1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}]$ and 2.19 and 1.90 (each $3 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{Ac})$.

2,3-O-Cyclohexane-1,1-diyl derivatives 6d and 7d of the

 respective 1 D - and $1 \mathrm{~L}-(1,4 / 2,3,5)-5$-acetamido-1- $\mathrm{O}-(2,3,4,6$ -tetra- O-acetyl- β-D-glucopyranosyl)cyclopentane-1,2,3,4tetraol and (1,4/2,3,5)-5-acetamido-1,4-di-O-(2,3,4,6-tetra- O -acetyl- β-D-glucopyranosyl)cyclopentane-1,2,3,4-tetraol 8d To a solution of the diol $4(1.00 \mathrm{~g}, 3.69 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($100 \mathrm{~cm}^{3}$) were added Drierite (818 mg), AgOTf ($1.42 \mathrm{~g}, 5.53$ $\mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv.), tetramethylurea ($1.32 \mathrm{~cm}^{3}, 9.49 \mathrm{mmol}$, 2.6 mol equiv.) and $2,3,4,6$-tetra- O-acetyl- α-D-glucopyranosyl bromide ($2.27 \mathrm{~g}, 5.59 \mathrm{mmol}, 1.5 \mathrm{~mol}$ equiv.) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 50 h at $0-5^{\circ} \mathrm{C}$ in the dark, and was then neutralized with $10 \% \mathrm{Et}_{3} \mathrm{~N}-\mathrm{CHCl}_{3}$ and filtered through a bed of Celite. The filtrate was evaporated to leave a syrupy residue, which was chromatographed on a column of silica gel (300 g) with acetone-toluene ($1: 4, \mathrm{v} / \mathrm{v}$) as eluent to give, first, the bis-glucoside 8 d ($180 \mathrm{mg}, 5.2 \%$) as a syrup (Found: C, 52.5 ; H, 6.4; $\mathrm{N}, 1.5 . \mathrm{C}_{41} \mathrm{H}_{57} \mathrm{NO}_{23}$ requires C, 52.8; H, 6.2; N, 1.5%); $[\alpha]_{\mathrm{D}}^{24}$ $-12\left(c 0.98, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 1750(\mathrm{OAc})$, $1650(\mathrm{NAc})$ and $1550(\mathrm{NH}) ; \delta_{\mathrm{H}} \ddagger\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.95(1 \mathrm{H}$, $\mathrm{d}, J_{5 . \mathrm{NH}} 7.3, \mathrm{NH}$), 5.22 and 5.21 (each $1 \mathrm{H}, 2 \mathrm{dd}, J 9.2$ and $9.5,3^{\prime}-$ and $3^{\prime \prime}-\mathrm{H}$), 5.10 and 5.07 (each $1 \mathrm{H}, 2$ dd, $J 9.5$ and 9.9, 4^{\prime} - and $\left.4^{\prime \prime}-\mathrm{H}\right), 4.97$ and 4.93 (each $1 \mathrm{H}, 2 \mathrm{dd}, J 8.1$ and $9.2,2^{\prime}$ - and $2^{\prime \prime}-\mathrm{H}$), 4.74 and 4.68 (each $1 \mathrm{H}, 2 \mathrm{~d}, J 8.1,1^{\prime}$ - and $1^{\prime \prime}-\mathrm{H}$), $4.60-4.05(4 \mathrm{H}$, $\mathrm{m}, 1-, 2-, 3-\mathrm{and} 4-\mathrm{H}$), 4.28 ($2 \mathrm{H}, 2$ dd, $J_{5^{\prime} 6}$ 4.0, $J_{g e m} 12.1,6^{\prime}$ - and $\left.6^{\prime \prime}-\mathrm{H}\right), 4.13\left(2 \mathrm{H}, 2\right.$ dd, $J_{5^{\prime}} 6^{\prime} 2.2, J_{\text {gem }} 12.1,6^{\prime}$ - and $\left.6^{\prime \prime}-\mathrm{H}\right), 4.01$ (1 H , ddd, $J_{1.5} 5.8, J_{4.5} 5.8, J_{5 . \mathrm{NH}} 7.3,5-\mathrm{H}$), 3.74 (2 H , ddd, $J_{4 \cdot 5}$. 9.9, $J_{5^{\prime} .6} \cdot 2.2$ and $4.0,5^{\prime}-$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 2.11,2.08,2.07,2.05,2.03$, 2.02, 2.00 and $1.97(3,3,3,3,3,3,6$ and $3 \mathrm{H}, 8 \mathrm{~s}, 9 \times \mathrm{Ac})$ and $1.69-1.50\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$.The second fraction gave the mono-glucoside $\mathbf{6 d}(676 \mathrm{mg}$, 30.5%) as a syrup (Found: $\mathrm{C}, 53.8 ; \mathrm{H}, 6.4 ; \mathrm{N}, 2.6 . \mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{14}$ requires C, $53.9 ; \mathrm{H}, 6.5 ; \mathrm{N}, 2.3 \%$); $[\alpha]_{\mathrm{D}}^{23}-55\left(c 0.89, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3350(\mathrm{OH}$ and NH$), 1760(\mathrm{OAc}), 1650(\mathrm{NAc})$ and $1550(\mathrm{NH}) ; \delta_{\mathrm{H}} \ddagger\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.36\left(1 \mathrm{H}, \mathrm{dd}, J_{5, \mathrm{NH}} 1.8\right.$ Hz, NH), 5.31 ($1 \mathrm{H}, \mathrm{d}, J_{4, \mathrm{OH}} 1.5, \mathrm{OH}$), $5.25\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime} .3 .3} 9.2, J_{3^{\prime} .4}\right.$ $\left.9.5,3^{\prime}-\mathrm{H}\right), 5.08\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4} \cdot 9.5, J_{4^{\prime}, 5} .9 .9,4^{\prime}-\mathrm{H}\right), 5.01(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1^{\prime}, 2^{\prime}} 8.1, J_{2^{\prime}, 3^{\prime}} 9.2,2^{\prime}-\mathrm{H}\right), 4.75\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.1,1^{\prime}-\mathrm{H}\right), 4.45-$ $4.26\left(4 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 4-\mathrm{H}\right.$, and $\left.\mathbf{6}^{\prime}-\mathrm{H}_{2}\right), 4.02-3.88(3 \mathrm{H}, \mathrm{m}, 2-, 3-$ and $5-\mathrm{H}), 3.78\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 5^{\prime}-\mathrm{H}\right), 2.11,2.08,2.05,2.04$ and 2.02 (each $3 \mathrm{H}, 5 \mathrm{~s}, 5 \times \mathrm{Ac}$) and $1.70-1.55\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$.

The third fraction gave the mono-glucoside 7 d ($355 \mathrm{mg}, 16.0 \%$) as a syrup (Found: C, $53.7 ; \mathrm{H}, 6.8 ; \mathrm{N}, 2.3 \%$); $[\alpha]_{\mathrm{D}}^{23}-16(c 1.01$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3350(\mathrm{OH}$ and NH), $1750(\mathrm{OAc}), 1650$ (NAc) and $1550(\mathrm{NH}) ; \delta_{\mathrm{H}} \ddagger\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.00(1 \mathrm{H}$, d, $J_{5 . \mathrm{NH}} 7.9, \mathrm{NH}$), 5.24 ($\left.1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 9.2, J_{3^{\prime} .4}, 9.5,3^{\prime}-\mathrm{H}\right)$,
\ddagger Primed locants refer to the tetra- O-acetylglucopyranosyl moiety.
$5.10\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime} \cdot 4}, 9.5, J_{4^{\prime} \cdot 5}, 9.9,4^{\prime}-\mathrm{H}\right), 4.95\left(1 \mathrm{H}\right.$, dd, $J_{1^{\prime}, 2}, 8.1$, $\left.J_{2^{\prime}, 3}, 9.2,2^{\prime}-\mathrm{H}\right), 4.80\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.1,1^{\prime}-\mathrm{H}\right), 4.72\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{2,3}\right.$ $6.3,2$ or $3-\mathrm{H}), 4.60\left(1 \mathrm{H}\right.$, br d, $J_{2.3} 6.3,3$ - or $\left.2-\mathrm{H}\right), 4.31(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{5^{\prime}, 6^{\prime}} \cdot 4.6, J_{g e m} 12.5,6^{\prime}-\mathrm{H}\right), 4.14\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6^{\prime}} \cdot 2.4, J_{g e m} 12.5,6^{\prime}-\mathrm{H}\right)$, $4.10-4.01(3 \mathrm{H}, \mathrm{m}, 1-, 4-$ and $5-\mathrm{H}), 3.77\left(1 \mathrm{H}\right.$, ddd, $J_{4} \cdot 5^{5} 9.9, J_{5^{\prime}, 6}$ 2.4 and $\left.4.6,5^{\prime}-\mathrm{H}\right), 3.27\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{4 . \text { он }} 7.1, \mathrm{OH}\right), 2.10,2.07,2.03$, 2.01 and 1.98 (each $3 \mathrm{H}, 5 \mathrm{~s}, 5 \times \mathrm{Ac})$ and $1.65-1.50(10 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{10}$).

2,3- O-Cyclohexane-1,1-diyl derivative 14d of 1L-(1,4/2,3,5)-5-acetamido-1- O-[(imidazo-1-yl)thiocarbonyl]-4-O-(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)cyclopentane-1,2,3,4-tetraol
To a solution of the glucoside $\mathbf{6 d}(100 \mathrm{mg}, 0.166 \mathrm{mmol})$ in $1,2-$ dichloroethane ($3 \mathrm{~cm}^{3}$) was added $1,1^{\prime}$-thiocarbonyldiimidazole ($148 \mathrm{mg}, 0.831 \mathrm{mmol}, 5 \mathrm{~mol}$ equiv.) at room temp. The mixture was stirred for 32 h at $100^{\circ} \mathrm{C}$. After cooling, the reaction mixture was diluted with $\mathrm{CHCl}_{3}\left(25 \mathrm{~cm}^{3}\right)$, washed with water $\left(15 \mathrm{~cm}^{3} \times 3\right)$ and dried. Removal of the solvent gave a syrupy residue, which was purified by a column of silica gel (2 g) with acetone-toluene ($1: 4, \mathrm{v} / \mathrm{v}$) as eluent to give the xanthate 14 d ($118 \mathrm{mg}, \sim 100 \%$) as a syrup (Found: C, $52.3 ; \mathrm{H}, 6.2 ; \mathrm{N}, 5.8$. $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{14} \mathrm{~S}$ requires C, 52.3; H, 5.8; N, 5.9\%); [x] $]_{\mathrm{D}}^{23}-9.4$ (c 1.04, acetone); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3280(\mathrm{NH}), 1755$ (OAc), 1650 (NAc) and $1540(\mathrm{NH}) ; \delta_{\mathrm{H}} \ddagger\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.43,7.67$ and 7.08 (each $1 \mathrm{H}, 3 \mathrm{brs}$, imidazole), 5.97 ($1 \mathrm{H}, \mathrm{d}, J_{5 . \mathrm{NH}} 8.1, \mathrm{NH}$), $5.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 5.20\left(1 \mathrm{H}\right.$, dd, $\left.J_{2^{\prime}, 3^{\prime}} 9.2, J_{3^{\prime} .4^{\prime}} 9.5,3^{\prime}-\mathrm{H}\right)$, 4.97 ($\left.1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime} .4^{\prime}} \cdot 9.5, J_{4^{\prime} .5} \cdot 9.9,4^{\prime}-\mathrm{H}\right), 4.95-4.88(1 \mathrm{H}, \mathrm{m}, 5-$ H), 4.94 ($\left.1 \mathrm{H}, \mathrm{dd}^{\prime} J_{1^{\prime} \cdot 2^{\prime}} 8.1, J_{2^{\prime} \cdot 3}, 9.2,2^{\prime}-\mathrm{H}\right), 4.85-4.75(1 \mathrm{H}, \mathrm{m}$, 2 - or 3-H), 4.67-4.60 ($1 \mathrm{H}, \mathrm{m}, 3-$ or $2-\mathrm{H}), 4.77\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2}, 8.1\right.$, $\left.1^{\prime}-\mathrm{H}\right), 4.17(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}), 4.12\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6^{\prime}} 4.6, J_{g e m} 12.4\right.$, $6^{\prime}-\mathrm{H}$), 4.05 (1 H , dd, $J_{5^{\prime} \cdot 6^{\prime}} 2.0, J_{g e m} 12.4,6^{\prime}-\mathrm{H}$), 3.78 (1 H , ddd, $J_{4^{\prime}, 5}, 9.9, J_{5^{\prime} .6^{\prime}} 2.0$ and $\left.4.6,5^{\prime}-\mathrm{H}\right), 2.07,2.02$ and $2.00(3,3$ and 9 $\mathrm{H}, 3 \mathrm{~s}, 5 \times \mathrm{Ac})$ and $1.70-1.56\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$.

1,2-O-Cyclohexane-1,1-diyl derivative 15d of $1 \mathrm{D}-(1,2,4 / 3)-4$ -acetamido-3- O-($2,3,4,6$-tetra- O-acetyl- β-D-glucopyranosyl)-cyclopentane-1,2,3-triol
To a solution of the xanthate $14 \mathrm{~d}(81.8 \mathrm{mg}, 0.115 \mathrm{mmol})$ and a catalytic amount of AIBN in toluene ($3 \mathrm{~cm}^{3}$) was added $\mathrm{Bu}_{3} \mathrm{SnH}\left(92 \mathrm{~mm}^{3}, 0.345 \mathrm{mmol}, 3 \mathrm{~mol}\right.$ equiv.), and the mixture was stirred for 30 min at reflux. After cooling, evaporation of the mixture gave an oily residue, which was chromatographed on a column of silica gel (3.5 g) with acetone-toluene ($1: 4, \mathrm{v} / \mathrm{v}$) as eluent to give the deoxy compound $15 \mathrm{~d}(52.2 \mathrm{mg}, 77.6 \%$) as a syrup (Found: C, 55.2; H, 7.2; N, 2.5. $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{13}$ requires C, $55.4 ; \mathrm{H}, 6.7 ; \mathrm{N}, 2.4 \%$); $[\alpha]_{\mathrm{D}}^{24}+19$ (c 1.1, acetone); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3430(\mathrm{NH}), 1750(\mathrm{OAc}), 1660(\mathrm{NAc})$ and 1520 (NH); $\delta_{\mathrm{H}} \ddagger\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.17\left(1 \mathrm{H}, \mathrm{d}, J_{4 . \mathrm{NH}} 7.2, \mathrm{NH}\right), 5.21$ ($1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 9.2, J_{3^{\prime}, 4^{\prime}} 9.5,3^{\prime}-\mathrm{H}$), $5.07\left(1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4^{\prime}} 9.5\right.$, $\left.J_{4^{\prime}, 5^{\prime}} 9.9,4^{\prime}-\mathrm{H}\right), 4.95\left(1 \mathrm{H}, \mathrm{dd}, J_{1^{\prime} \cdot 2^{\prime}} 8.1, J_{2^{\prime}, 3^{\prime}} 9.2,2^{\prime}-\mathrm{H}\right), 4.80-$ $4.70(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.76\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2}, 8.1, \mathrm{i}^{\prime}-\mathrm{H}\right), 4.55(1 \mathrm{H}, \mathrm{br}$ dd, $\left.J_{3,4} 9.0, J_{4.5} 9.2,4-\mathrm{H}\right), 4.39\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J_{3.4} 9.0,3-\mathrm{H}\right), 4.30$ ($1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6^{\prime}} 4.7, J_{g e m} 12.5,6^{\prime}-\mathrm{H}$), 4.17 (1 H , dd, $J_{5^{\prime}, 6^{\prime}} 2.2$, $\left.J_{\text {gem }} 12.5,6^{\prime}-\mathrm{H}\right), 4.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}), 3.83\left(1 \mathrm{H}\right.$, ddd, $J_{4^{\prime}, 5}, 9.9$, $J_{5} \cdot 6^{\prime} 2.2$ and $\left.4.7,5^{\prime}-\mathrm{H}\right), 2.25\left(1 \mathrm{H}\right.$, ddd, $J_{1.5} 4.4, J_{4.5} 9.2, J_{g e m}$ $15.5,5-\mathrm{H}), 2.07,2.06,2.02,1.99$ and 1.93 (each $3 \mathrm{H}, 5 \mathrm{~s}$, $5 \times \mathrm{Ac}), 2.00-1.90(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$ and $1.66-1.52(10 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{10}$).

1D-(1,2,4/3)-4-Acetamido-1,2,3-tri- O-acetylcyclopentane-1,2,3triol D-16
A solution of the deoxy compound 15 d ($70.9 \mathrm{mg}, 0.121 \mathrm{mmol}$) in $4 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid ($3 \mathrm{~cm}^{3}$) was stirred for 3.5 h at $80^{\circ} \mathrm{C}$. Evaporation of the mixture gave a syrupy residue, which was acetylated conventionally. Column chromatography (4 g) with acetone-toluene ($1: 4, \mathrm{v} / \mathrm{v}$) gave the tetra-N,O-acetyl derivative 16 ($28.6 \mathrm{mg}, 78.4 \%$) as a syrup (Found: C, $51.7 ;$ H, 6.7;

N, 4.4. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{7}$ requires $\mathrm{C}, 51.8 ; \mathrm{H}, 6.3 ; \mathrm{N}, 4.7 \%$); $[\alpha]_{\mathrm{D}}^{22}$ +16 ($c 1.03$, acetone); $v_{\text {max }}$ (neat)/ $/ \mathrm{cm}^{-1} 3300(\mathrm{NH}), 1745$ (OAc), $1655(\mathrm{NAc})$ and $1540(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.06(1 \mathrm{H}, \mathrm{d}$, $J_{4, \mathrm{NH}} 5.9, \mathrm{NH}$), 5.31 (1 H , ddd, $J_{1,2} 5.1, J_{1,5} 3.5$ and $6.3,1-\mathrm{H}$), $5.25\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3} 8.1, J_{3,4} 7.8,3-\mathrm{H}\right), 5.15\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 5.1, J_{2.3}\right.$ $8.1,2-\mathrm{H}$), $4.20\left(1 \mathrm{H}\right.$, dddd, $J_{3.4} 7.8, J_{4.5} 6.1$ and $9.4, J_{4 . \mathrm{NH}} 5.9$, $4-\mathrm{H}), 2.73$ (1 H, ddd, $J_{1.5} 6.3, J_{4.5} 9.4, J_{g e m} 15.0,5-\mathrm{H}$), 2.10 , 2.08, 2.05 and 1.98 (each $3 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac}$) and $1.70(1 \mathrm{H}$, ddd, $\left.J_{1,5} 3.5, J_{4,5} 6.1, J_{g e m} 15.0,5-\mathrm{H}\right)$.

(2R)-2-Acetamido-1,4-di-O-acetylbutane-1,4-diol (R)-17

The acetate $\mathrm{D}-16(36.6 \mathrm{mg}, 0.121 \mathrm{mmol})$ was treated with methanolic NaOMe for 1 h at room temp. The mixture was neutralized with Amberlite IR 120B (H^{+}) resin and evaporated to give a syrupy residue, which was dissolved in water ($2 \mathrm{~cm}^{3}$). $\mathrm{NaIO}_{4}(93.8 \mathrm{mg}, 0.440 \mathrm{mmol}, 4 \mathrm{~mol}$ equiv.) was added to the solution at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 40 min at room temp. The mixture was neutralized with NaHCO_{3}, saturated with NaCl , and then extracted with THF ($30 \mathrm{~cm}^{3} \times 5$). The organic layers were combined, dried, and evaporated to give a syrupy residue, which was treated with NaBH_{4} ($45.6 \mathrm{mg}, 1.21 \mathrm{mmol}, 11 \mathrm{~mol}$ equiv.) in MeOH (2 cm^{3}) for 25 min at room temp. The mixture was neutralized with AcOH , and evaporated. The residue was acetylated conventionally. Column chromatography on silica gel (4 g) with acetone-toluene ($1: 2, \mathrm{v} / \mathrm{v}$) gave the acetate (R) - 17 (6.8 $\mathrm{mg}, 24.2 \%$) as crystals, $\mathrm{mp} 122-123^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 51.8; H, 7.7; N, 6.1. Calc. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{5}$: C, $51.9 ; \mathrm{H}, 7.4 ; \mathrm{N}$, $6.1 \%) ;[\alpha]_{\mathrm{D}}^{23}+47\left(c 0.37, \mathrm{CHCl}_{3}\right)\left[\mathrm{lit}. .{ }^{12} \mathrm{mp} 118-119^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}\right.$ $\left.+42\left(c 1.14, \mathrm{CHCl}_{3}\right)\right]$. The ${ }^{1} \mathrm{H}$ NMR and IR spectra were identical with those of an authentic sample. ${ }^{12}$

2,3-O-Cyclohexane-1,1-diyl derivative 18d of $1 \mathrm{D}-(\mathbf{1 , 4 / 2 , 3 , 5)}$-5-

 acetamido-1- O-[(imidazo-1-yl)thiocarbonyl]-4- O-(2,3,4,6-tetra-O-acetyl- β-D-glucopyranosyl)cyclopentane-1,2,3,4-tetraol The glucoside 7d ($140 \mathrm{mg}, 0.233 \mathrm{mmol}$) was converted, as in preparation of compound 14 d , into the xanthate 18 d (148 mg , 89.5%) as a syrup (Found: C, $52.3 ; \mathbf{H}, 6.2 ; \mathrm{N}, 5.8$. $\mathrm{C}_{31} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{14} \mathrm{~S}$ requires C, 52.3; H, 5.8; N, 5.9\%); [$\left.\alpha\right]_{\mathrm{D}}^{23}-20$ (c $1.04, \mathrm{CHCl}_{3}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 1760(\mathrm{OAc}), 1670$ (NAc) and $1540(\mathrm{NH}) ; \delta_{\mathrm{H}} \ddagger\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 8.36,7.60$ and 7.07 (each $1 \mathrm{H}, 3 \mathrm{br} \mathrm{s}$, imidazole), $6.04\left(1 \mathrm{H}, \mathrm{d}, J_{5, \mathrm{NH}} 8.8, \mathrm{NH}\right.$), 5.68 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 1-\mathrm{H}$), $5.22\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3^{\prime}} 9.2, J_{3^{\prime}, 4}{ }^{\prime} 9.5,3^{\prime}-\mathrm{H}\right.$), 5.07 ($\left.1 \mathrm{H}, \mathrm{dd}, J_{3^{\prime}, 4} .9 .5, J_{4^{\prime} .5} \cdot 9.5,4^{\prime}-\mathrm{H}\right), 4.97\left(1 \mathrm{H}\right.$, dd, $J_{1^{\prime}, 2}, 8.1$, $\left.J_{2^{\prime}, 3}, 9.2,2^{\prime}-\mathrm{H}\right), 4.88(1 \mathrm{H}$, br d, $J 5.4,2$ or $3-\mathrm{H}), 4.80(1 \mathrm{H}, \mathrm{br}$ d, $J 5.4,3-$ or $2-\mathrm{H}), 4.74\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2}, 8.1,1^{\prime}-\mathrm{H}\right), 4.51(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $\left.J_{5 . \mathrm{NH}} 8.8,5-\mathrm{H}\right), 4.27\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6^{\prime}} 5.0, J_{g e m} 12.3,6^{\prime}-\mathrm{H}\right), 4.17(1$ H, br s, 4-H), 4.15 ($1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6} \cdot 2.6, J_{g e m} 12.3,6^{\prime}-\mathrm{H}$), 3.76 (1 H , ddd, $J_{4^{\prime} .5^{\prime}} 9.5, J_{5^{\prime} .6}, 2.6$ and $\left.5.0,5^{\prime}-\mathrm{H}\right), 2.09,2.03,2.00$ and $1,99(3,3,6$ and $3 \mathrm{H}, 4 \mathrm{~s}, 5 \times \mathrm{Ac})$ and $1.75-1.50(10 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{10}$).
1,2-O-Cyclohexane-1,1-diyl derivative 19d of $1 \mathrm{~L}-(1,2,4 / 3)-4$ acetamido-3- O-($2,3,4,6$-tetra- O-acetyl- β-D-glucopyranosyl)-cyclopentane-1,2,3-triol

The xanthate $18 \mathrm{~d}(56.4 \mathrm{mg}, 0.0792 \mathrm{mmol})$ was converted, as in the preparation of compound 15 d , into the deoxy derivative 19d ($37.3 \mathrm{mg}, 80.4 \%$) as a syrup (Found: C, $55.2 ; \mathrm{H}, 7.1 ; \mathrm{N}, 2.5$. $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{NO}_{13}$ requires $\mathrm{C}, 55.4 ; \mathrm{H}, 6.7 ; \mathrm{N}, 2.4 \%$; $[\alpha]_{\mathrm{D}}^{25}-36.5(c$ $0.52, \mathrm{CHCl}_{3}$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3440(\mathrm{NH}), 1760(\mathrm{OAc}), 1670$ (NAc) and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}} \ddagger\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.20(1 \mathrm{H}, \mathrm{d}$, $J_{4, \mathrm{NH}} 7.7, \mathrm{NH}$), $5.21\left(1 \mathrm{H}, \mathrm{dd}, J_{2^{\prime}, 3 .} 9.2, J_{3^{\prime} \cdot 4^{\prime}} 9.5,3^{\prime}-\mathrm{H}\right), 5.09(1$ H , dd, $\left.J_{3} \cdot 4^{\prime}, 9.5, J_{4^{\prime}, 5^{\prime}} 9.9,4^{\prime}-\mathrm{H}\right), 4.93$ (1 H , dd, $J_{1^{\prime}, 2^{\prime}} 8.1, J_{2^{\prime}, 3^{\prime}}$ $\left.9.2,2^{\prime}-\mathrm{H}\right), 4.81\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime}, 2^{\prime}} 8.1,1^{\prime}-\mathrm{H}\right), 4.80-4.74(1 \mathrm{H}, \mathrm{m}, 1-$ H), $4.59(1 \mathrm{H}, \mathrm{dd}, J 1.5$ and $5.5,2-\mathrm{H}), 4.32\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime} .6} .4 .4\right.$,
\ddagger See footnote on p. 1699.
$\left.J_{g e m} 12.5,6^{\prime}-\mathrm{H}\right), 4.19-4.13(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.12\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6^{\prime}}\right.$. $2.2, J_{\text {gem }} 12.5,6^{\prime}-\mathrm{H}$), 4.08 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3-\mathrm{H}$), 3.76 (1 H , ddd, $J_{4 \cdot 5}{ }^{\prime}$ $9.9, J_{5^{\prime} .6} \cdot 2.2$ and $4.4,5^{\prime}-\mathrm{H}$), 2.09, 2.05, 2.02, 1.99 and 1.94 (each $3 \mathrm{H}, 5 \mathrm{~s}, 5 \times \mathrm{Ac}$), 2.05-1.95 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$) and 1.70-1.50 (10 $\mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}$).

1L-(1,2,4/3)-4-Acetamido-1,2,3-tri- O-acetylcyclopentane-1,2,3triol L-16

The deoxy derivative 19d ($37.2 \mathrm{mg}, 0.0635 \mathrm{mmol}$) was deprotected and then acetylated as in the preparation of compound D-16 to give the tetra-N,O-acetyl derivative L-16 $(18.4 \mathrm{mg}, 96.3 \%$) as a syrup (Found: C, $51.6 ; \mathrm{H}, 6.7 ; \mathrm{N}, 4.7$. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{7}$ requires C, $51.8 ; \mathrm{H}, 6.4 ; \mathrm{N}, 4.7 \%$); $[\alpha]_{\mathrm{D}}^{26}-11$ (c 0.20 , acetone).
(2S)-2-Acetamido-1,4-di-O-acetylbutane-1,4-diol (S)-17
The acetate L-16 ($20.4 \mathrm{mg}, 0.0677 \mathrm{mmol}$) was converted, as in the preparation of compound $(R)-17$, into the tri-N,O-acetyl derivative (S) $\mathbf{- 1 7}\left(5.5 \mathrm{mg}, 35.4 \%\right.$) as crystals, $\mathrm{mp} 122-123^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 51.9; H, 7.8; N, 5.8. $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires $\mathrm{C}, 51.9 ; \mathrm{H}, 7.4 ; \mathrm{N}, 6.1 \%) ;[\alpha]_{\mathrm{D}}^{25}-43\left(c 0.27, \mathrm{CHCl}_{3}\right)$.

Mixture of the 2,3-O-cyclohexane-1,1-diyl derivatives 18a and 14 a of the respective 1 L - and $1 \mathrm{D}-(1,4 / 2,3,5)-5$-acetamido-1-O-[(2S)-2-acetoxy (phenyl)acetyl]-4-O-[(imidazo-1-yl)thio-carbonyl]cyclopentane-1,2,3,4-tetraol
The mixture ($114 \mathrm{mg}, 0.255 \mathrm{mmol}$) of the acetylmandelates $6 \mathbf{a}$ and 7a ($\sim 2: 5$) was treated with 1, 1^{\prime}-thiocarbonyldiimidazole ($136 \mathrm{mg}, 0.763 \mathrm{mmol}, 3 \mathrm{~mol}$ equiv.) for 2 h at $80^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{CHCl}_{3}\left(25 \mathrm{~cm}^{3}\right)$, washed with water $\left(15 \mathrm{~cm}^{3} \times 3\right)$ and dried. Evaporation of the solvent gave a syrupy residue, which was chromatographed on a column of silica gel (5 g) with acetone-toluene ($1: 3, \mathrm{v} / \mathrm{v}$) as eluent to give a mixture ($124 \mathrm{mg}, 88 \%$) of two xanthates 14a and 18a ($\sim 2: 5$) as a syrup (Found: C, 58.0; H, 5.7; N, 7.4. $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}$ requires $\mathrm{C}, 58.2 ; \mathrm{H}, 5.6 ; \mathrm{N}, 7.5 \%) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) for the major compound 18a: 5.79 [1 H, s, $\mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}]$ and 2.19 and 1.92 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac}$); for the minor compound 14a: 5.83 [$1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}$] and 2.15 and 1.96 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac}$).

1,2-O-Cyclohexane-1,1-diyl derivatives 15a and 19a of the respective 1 D - and $1 \mathrm{~L}-(1,2,4 / 3)$-4-acetamido-3-O-[($2 S$)-2acetoxy (phenyl)acetyl] cyclopentane-1,2,3-triol

A mixture ($148 \mathrm{mg}, 0.265 \mathrm{mmol}$) of the xanthates 14a and 18a was converted, as in the preparation of compound 15 d , into a mixture of the deoxy derivatives $15 a$ and 19a, which was chromatographed to give, first compound 19 a ($63.5 \mathrm{mg}, 55.5 \%$) as a syrup (Found: $\mathrm{C}, 63.8 ; \mathrm{H}, 7.2 ; \mathrm{N}, 3.4 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{7}$ requires $\mathrm{C}, 64.0 ; \mathrm{H}, 6.8 ; \mathrm{N}, 3.3 \%) ;[\alpha]_{\mathrm{D}}^{25}+54\left(c 0.63, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1750(\mathrm{C}=0), 1660(\mathrm{NAc})$ and 1520 (NH); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.47-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.15(1 \mathrm{H}$, $\left.\mathrm{d}, J_{4, \mathrm{NH}} 8.8, \mathrm{NH}\right), 5.81[1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}], 4.99(1 \mathrm{H}, \mathrm{s}$, $3-\mathrm{H}), 4.78\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 5.5, J_{1,5} 5.1,1-\mathrm{H}\right), 4.50\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 5.5\right.$, $2-\mathrm{H}), 4.16\left(1 \mathrm{H}, \mathrm{brdd}, J 7.0, J_{4, \mathrm{NH}} 8.8,4-\mathrm{H}\right), 2.19$ and 1.89 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac}), 2.14-1.85\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right)$ and $1.75-1.20(10 \mathrm{H}$, $\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}$).
The second fraction gave the deoxy derivative $15 \mathrm{a}(15.9 \mathrm{mg}$, 13.9%) as a syrup (Found: C, 63.6; H, 7.1; N, 3.3. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{7}$ requires $\mathrm{C}, 64.0 ; \mathrm{H}, 6.8 ; \mathrm{N}, 3.3 \%$); $[\alpha]_{\mathrm{D}}^{25}+24\left(c 1.3, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1750(\mathrm{C}=0), 1660(\mathrm{NAc})$ and 1520 (NH); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.48-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.15(1 \mathrm{H}$, $\left.\mathrm{d}, J_{4, \mathrm{NH}} 8.8, \mathrm{NH}\right), 5.90[1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}], 4.98(1 \mathrm{H}$, $\mathrm{s}, 3-\mathrm{H}), 4.58\left(1 \mathrm{H}\right.$, ddd, $J_{1,2} 5.5, J_{1,5} 1.9$ and $\left.4.6,1-\mathrm{H}\right), 4.43$ (1 H , br dd, $J 6.7, J_{4 . \mathrm{NH}} 8.8,4-\mathrm{H}$), $4.21\left(1 \mathrm{H}, \mathrm{d}, J_{1,2} 5.5,2-\mathrm{H}\right.$), 2.18 and 1.93 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac}), 2.10-2.00\left(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}\right)$ and 1.80-1.20 ($10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}$).

1L-(1,2,4/3)-4-Acetamido-1,2,3-tri- O-acetylcyclopentane-1,2,3triol L-16
The deoxy derivative $19 \mathrm{a}(16.0 \mathrm{mg}, 0.0371 \mathrm{mmol})$ was treated with $4 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(2 \mathrm{~cm}^{3}\right)$ for 12 h at $70^{\circ} \mathrm{C}$. Evaporation gave a syrupy residue, which was acetylated conventionally. Column chromatography on silica gel (1 g) with acetonetoluene ($1: 4, \mathrm{v} / \mathrm{v}$) afforded the tetra- N, O-acetyl derivative $\mathrm{L}-16$ ($10.9 \mathrm{mg}, 97.3 \%$) as a syrup, $[\alpha]_{\mathrm{D}}^{21}-12(c 0.17$, acetone) .

1D-(1,2,4/3)-4-Acetamido-1,2,3-tri- O-acetylcyclopentane-1,2,3triol D-16
The deoxy derivative $15 \mathrm{a}(5.0 \mathrm{mg}, 0.0116 \mathrm{mmol}$) was similarly converted into the tetra- N, O-acetyl derivative $\mathrm{D}-16(3.4 \mathrm{mg}$, $97.3 \%)$ as a syrup, $[\alpha]_{\mathrm{D}}^{21}+15(c 0.17$, acetone $)$.

Mixture of 2,3-O-cyclohexane-1,1-diyl derivatives 18 c and 14 c

 of the respective 1 L - and $1 \mathrm{D}-(1,4 / 2,3,5)-5$-acetamido-1- O -[(2R,3R)-2,3-(cyclohexane-1,1-diyldioxy)-3-ethoxycarbonyl-propanoyl]-4-O-[(imidazo-1-yl)thiocarbonyl]cyclopentane-1,2,3,4-tetraolThe mixture ($88.0 \mathrm{mg}, 0.172 \mathrm{mmol}$) of the mono-esters $\mathbf{6 c}$ and 7c $(\sim 4: 1)$ was treated with 1,1 '-thiocarbonyldiimidazole ($92.0 \mathrm{mg}, 0.516 \mathrm{mmol}, 3 \mathrm{~mol}$ equiv.) in 1,2 -dichloroethane $\left(4 \mathrm{~cm}^{3}\right)$ for 2 h at $80^{\circ} \mathrm{C}$. The reaction mixture was diluted with $\mathrm{CHCl}_{3}\left(25 \mathrm{~cm}^{3}\right)$, washed with water $\left(15 \mathrm{~cm}^{3} \times 3\right)$, and dried. Evaporation of the mixture gave a syrupy residue, which was chromatographed on a column of silica gel (6 g) with acetonetoluene ($1: 3, \mathrm{v} / \mathrm{v}$) as eluent to give a mixture ($88.0 \mathrm{mg}, 82.3 \%$) of the xanthates 14 c and $18 \mathrm{c}(\sim 4: 1)$ as a syrup (Found: C , $56.3 ; \mathrm{H}, 6.7 ; \mathrm{N}, 6.6 . \mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{~S}$ requires $\mathrm{C}, 56.0 ; \mathrm{H}, 6.3$; $\mathrm{N}, 6.7 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 1755$ (C=O), 1670 (NAc) and $1530(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) the major product 14c: $8.40,7.69$ and 7.04 (each $1 \mathrm{H}, 3 \mathrm{~s}$, imidazole); and the minor compound 18c: $8.42,7.71$ and 7.04 (each $1 \mathrm{H}, 3 \mathrm{~s}$, imidazole).

Mixture of 1,2-O-cyclohexane-1,1-diyl derivatives 15c and 19c of 1 D - and $1 \mathrm{~L}-(1,2,4 / 3)$-4-acetamido-3-O-[($2 R, 3 R-)-2,3-$ (cyclohexane-1,1-diyldioxy)-3-ethoxycarbonylpropanoyl]cyclo-pentane-1,2,3-triol
The mixture $(85.0 \mathrm{mg}, 0.137 \mathrm{mmol})$ of the xanthates 14 c and $18 \mathrm{c}(\sim 4: 1)$ was converted, as in the preparation of compound 15a, into a mixture ($43.9 \mathrm{mg}, 64.7 \%$) of the deoxy derivatives 15 c and $19 \mathrm{c}(\sim 4: 1)$ as a syrup (Found: $\mathrm{C}, 60.0 ; \mathrm{H}, 7.8 ; \mathrm{N}, 2.8$. $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{NO}_{9}$ requires $\mathrm{C}, 60.6 ; \mathrm{H}, 7.5 ; \mathrm{N}, 2.8 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3300(\mathrm{NH}), 1760(\mathrm{C}=\mathrm{O}), 1660(\mathrm{NAc})$ and $1520(\mathrm{NH})$.

Mixture of 1D-(D-16) and 1L-(1,2,4/3)-4-acetamido-1,2,3-tri-O-acetylcyclopentane-1,2,3-triol (L-16)

A mixture ($26.2 \mathrm{mg}, 0.0528 \mathrm{mmol}$) of the deoxy derivatives 15 c and 19c ($\sim 4: 1$) was similarly converted into a mixture $(15.9 \mathrm{mg}$, $\sim 100 \%$) of the tetra- N, O-acetyl derivatives D- and L-16 ($\sim 4: 1$) as a syrup, $[\alpha]_{\mathrm{D}}^{21}+4$ (c0.8, acetone).

2,3-O-Cyclohexane-1,1-diyl derivatives 9a and 10a of the

 respective 1 D - and $1 \mathrm{~L}-(1,2,3,4,5 / 0)$-5-acetamido-1- O-[(2S)-2acetoxy(phenyl)acetyl] cyclopentane-1,2,3,4-tetraol and (1,2,3,4,5/0)-5-acetamido-1,4-bis- O-[(2S)-2-acetoxy(phenyl)-acetyl]cyclopentane-1,2,3,4-tetraol 11aTo a solution of the diol $5(103 \mathrm{mg}, 0.380 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \mathrm{~cm}^{3}$) were added a catalytic amount of DMAP, $(S)-(+)-$ acetylmandelic acid ($81.1 \mathrm{mg}, 0.418 \mathrm{mmol}, 1.1 \mathrm{~mol}$ equiv.) and DCC ($86.2 \mathrm{mg}, 0.418 \mathrm{mmol}, 1.1 \mathrm{~mol}$ equiv.) at $-45^{\circ} \mathrm{C}$. The mixture was stirred for 5 h at the same temp. Saturated aq. $\mathrm{NaHCO}_{3}\left(3 \mathrm{~cm}^{3}\right)$ was added to the mixture, which was warmed to room temp. The solution was diluted with EtOAc $\left(30 \mathrm{~cm}^{3}\right)$, washed successively with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(10 \mathrm{~cm}^{3}\right)$ and saturated aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$, and dried. Removal of solvent
gave a syrupy residue, which was chromatographed on a column of silica gel (10 g) with acetone-toluene ($1 ; 3, \mathrm{v} / \mathrm{v}$) as eluent to give, first, the bis(acetylmandelate) $11 \mathrm{a}(33.5 \mathrm{mg}$, 14.6%) as a syrup (Found: C, 63.7; H, 6.1; N, 2.3. $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{NO}_{11}$ requires $\mathrm{C}, 63.6 ; \mathrm{H}, 6.0 ; \mathrm{N}, 2.3 \%) ;[\alpha]_{\mathrm{D}}^{23}+55\left(c 1.16, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3440(\mathrm{NH}), 1750(\mathrm{C}=\mathrm{O}), 1680(\mathrm{NAc})$ and 1520 $(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.55-7.30(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 5.88$ $\left(1 \mathrm{H}\right.$, br d, $\left.J_{5 . \mathrm{NH}} 5.6, \mathrm{NH}\right), 6.06$ and 5.88 [each $1 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}], 5.05-4.91(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{and} 4-\mathrm{H}), 4.70$ (1 H, ddd, $J 5.1,5.6$ and $9.5,5-\mathrm{H}), 4.73-4.65(2 \mathrm{H}, \mathrm{m}, 2-$ and $3-\mathrm{H})$, $2.20,2.19$ and 1.65 (each $3 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{Ac}$) and $1.47-1.33(10 \mathrm{H}$, $\mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}$).

The second fraction gave the acetylmandelate $10 \mathrm{a}(10.2 \mathrm{mg}$, 6.2%) as a syrup (Found: $\mathrm{C}, 62.1 ; \mathrm{H}, 6.7 ; \mathrm{N}, 3.2 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{8}$ requires $\mathrm{C}, 61.7 ; \mathrm{H}, 6.5 ; \mathrm{N}, 3.1 \%) ;[\alpha]_{\mathrm{D}}^{23}+75\left(c 0.93, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{OH}$ and NH$), 1750(\mathrm{C}=\mathrm{O}), 1680(\mathrm{NAc})$ and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.55-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $6.00[1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}], 5.85\left(1 \mathrm{H}, \mathrm{d}, J_{5 . \mathrm{NH}} 9.5, \mathrm{NH}\right)$, $5.16\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 4.9, J_{1,5} 4.8,1-\mathrm{H}\right), 4.63\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 4.9, J_{2,3}\right.$ $5.1,2-\mathrm{H}), 4.55\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 5.1, J_{3,4} 4.0,3-\mathrm{H}\right), 4.37(1 \mathrm{H}$, ddd, $\left.J_{1,5} 4.8, J_{4.5} 4.9, J_{5, \mathrm{NH}} 9.5,5-\mathrm{H}\right), 4.06\left(1 \mathrm{H}, \mathrm{dd}, J_{3,4} 4.0, J_{4.5} 4.9\right.$, $4-\mathrm{H}), 2.19$ and $1.73($ each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac})$ and $1.52-1.41$ ($10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}$).

The third fraction gave the acetylmandelate $9 \mathrm{a}(70.9 \mathrm{mg}$, 43.0%) as a syrup (Found: C, $61.8 ; \mathrm{H}, 6.9 ; \mathrm{N}, 3.2 \%$) $[\alpha]_{\mathrm{D}}^{23}-13$ (c $\left.0.50, \mathrm{CHCl}_{3}\right) ; v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3450(\mathrm{OH}$ and NH$), 1750$ $(\mathrm{C}=\mathrm{O}), 1680(\mathrm{NAc})$ and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.55-$ $7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.36\left(1 \mathrm{H}, \mathrm{d}, J_{5, \mathrm{NH}} 9.2, \mathrm{NH}\right), 5.91[1 \mathrm{H}, \mathrm{s}$, $\mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}], 5.11\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 5.4, J_{1.5} 5.1,1-\mathrm{H}\right), 4.61(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{1.2} 5.4, J_{2.3} 6.8,2-\mathrm{H}\right), 4.57\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3} 6.8, J_{3.4} 5.7\right.$, 3-H), $4.47\left(1 \mathrm{H}\right.$, ddd, $\left.J_{1,5} 5.1, J_{4,5} 5.1, J_{5, \mathrm{NH}} 9.2,5-\mathrm{H}\right), 4.09$ (1 H , dd, $J_{3.4} 5.7, J_{4.5} 5.1,4-\mathrm{H}$), 2.19 and 1.98 (each $3 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{Ac})$ and $1.47-1.33\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$.

2,3-O-Cyclohexane-1,1-diyl derivatives 9 b and 10 b of the

 respective 1 D - and $1 \mathrm{~L}-(1,2,3,4,5 / 0)$-5-acetamido-1- O-[(2R)-2acetoxy(phenyl)acetyl] cyclopentane-1,2,3,4-tetraol and (1,2,3,4,5/0)-5-acetamido-1,4-bis- O-[(2R)-2-acetoxy(phenyl)-acetyl]cyclopentane-1,2,3,4-tetraol 11bThe diol $5(266 \mathrm{mg}, 0.980 \mathrm{mmol})$ was treated as in the preparation of compounds 9a, 10a and 11a to give, first, the bis-ester $11 \mathrm{~b}(116 \mathrm{mg}, 19.0 \%$) as a syrup (Found: C, 63.5; H, 6.0; $\mathrm{N}, 2.2 . \mathrm{C}_{33} \mathrm{H}_{37} \mathrm{NO}_{11}$ requires $\mathrm{C}, 63.6 ; \mathrm{H}, 6.0 ; \mathrm{N}, 2.3 \%$); $[\alpha]_{\mathrm{D}}^{23}$ $-55\left(c 1.14, \mathrm{CHCl}_{3}\right)$.

The second fraction gave the mono-ester $9 \mathrm{~b}(31.5 \mathrm{mg}, 7.2 \%$) as a syrup (Found: $\mathrm{C}, 61.9 ; \mathrm{H}, 6.7 ; \mathrm{N}, 3.2 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{8}$ requires C , $61.7 ; \mathrm{H}, 6.5 ; \mathrm{N}, 3.1 \%$) ; $\alpha]_{\mathrm{D}}^{23}-87\left(c 0.94, \mathrm{CHCl}_{3}\right)$.

The third fraction gave the mono-ester $10 b(235 \mathrm{mg}, 53.6 \%$) as a syrup (Found: C, $61.5 ; \mathrm{H}, 6.8 ; \mathrm{N}, 3.1 \%$); $[\alpha]_{\mathrm{D}}^{23}+17(c 0.94$, CHCl_{3}).

2,3-O-Cyclohexane-1,1-diyl derivatives 9e and 10 e of the

 respective 1 D - and $1 \mathrm{~L}-(1,2,3,4,5 / 0)$-5-acetamido-1- O-[(1R,2S)-2-benzamidocyclohexanecarbonyl] cyclopentane-1,2,3,4-tetraol and (1,2,3,4,5/0)-5-acetamido-1,4-bis- O-[(1 $R, 2 S$)-2-benzamido-cyclohexanecarbonyl]cyclopentane-1,2,3,4-tetraol 11eTo a solution of the diol $5(50.0 \mathrm{mg}, 0.184 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($2 \mathrm{~cm}^{3}$) were added a catalytic amount of DMAP, $(1 R, 2 S)-2-$ benzamidocyclohexanecarboxylic acid $(45.6 \mathrm{mg}, 0.184 \mathrm{mmol}, 1$ mol equiv.), and DCC ($45.6 \mathrm{mg}, 0.221 \mathrm{mmol}, 1.2 \mathrm{~mol}$ equiv.) at $-15^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at the same temp. and $\mathrm{MeOH}\left(3 \mathrm{~cm}^{3}\right)$ was added to the solution. The reaction mixture was diluted with $\mathrm{EtOAc}\left(30 \mathrm{~cm}^{3}\right)$, washed successively with 1 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(10 \mathrm{~cm}^{3}\right)$ and saturated aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and dried. Evaporation of the mixture gave a residue, which was chromatographed on a column of silica gel (7 g) with acetone-toluene ($1: 3, \mathrm{v} / \mathrm{v}$) as eluent to give, first, the bis-ester
$11 \mathrm{e}(5.0 \mathrm{mg}, 3.7 \%$) as a syrup (Found: C, 67.2; H, 7.3; N, 5.7 . $\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{9}$ requires C, $\left.67.5 ; \mathrm{H}, 7.0 ; \mathrm{N}, 5.8 \%\right) ;[\alpha]_{\mathrm{D}}^{25}+19(c$ $1.03, \mathrm{CHCl}_{3}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 1730(\mathrm{C}=\mathrm{O}), 1650$ (NAc and NBz) and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}} \S\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.85-$ $7.38(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{Ph}), 7.31(1 \mathrm{H}, \mathrm{br}$ d, $J 8.8, \mathrm{NH}), 6.97(1 \mathrm{H}, \mathrm{br}$ d, $J 8.8, \mathrm{NH}$), $6.90(1 \mathrm{H}, \mathrm{br}$ d, $J 8.7, \mathrm{NH}$), $5.06(1 \mathrm{H}$, dd, $J 4.8$ and $5.1,1-$ or $4-\mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and $5.1,4$ - or 1-H), 4.75 $(1 \mathrm{H}, \mathrm{dd}, J 6.6$ and $11.6,2$ - or $3-\mathrm{H}), 4.73(1 \mathrm{H}, \mathrm{dd}, J 6.6$ and 7.0 , 3 - or $2-\mathrm{H}), 4.79-4.62\left(2 \mathrm{H}, \mathrm{m}, 5\right.$ - and 2^{\prime} - or $\left.2^{\prime \prime}-\mathrm{H}\right), 4.36(1 \mathrm{H}, \mathrm{m}$, $2^{\prime \prime}$ - or $\left.2^{\prime}-\mathrm{H}\right), 3.05\left(1 \mathrm{H}, \mathrm{br}\right.$ dd, $J 3.4$ and $4.4,1^{\prime}$ - or $\left.1^{\prime \prime}-\mathrm{H}\right), 2.85(1$ H , ddd, $J 3.3,4.0$ and $7.4,1^{\prime \prime}$ - or $1^{\prime}-\mathrm{H}$), 2.35 ($1 \mathrm{H}, \mathrm{m}, 6^{\prime}$ - or $6^{\prime \prime}-\mathrm{H}$), $2.05-1.05\left(25 \mathrm{H}, \mathrm{m}, 3^{\prime}-, 3^{\prime \prime}-, 4^{\prime}-, 4^{\prime \prime}-, 5^{\prime}-, 5^{\prime \prime}-, 6^{\prime}-\right.$ and $6^{\prime \prime}-\mathrm{H}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{10}$) and $1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$.

The second fraction gave the mono-ester 10e ($5.9 \mathrm{mg}, 6.4 \%$) as a syrup (Found: $\mathrm{C}, 64.9 ; \mathrm{H}, 7.1 ; \mathrm{N}, 5.6 . \mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{7}$ requires $\mathrm{C}, 64.8 ; \mathrm{H}, 7.3 ; \mathrm{N}, 5.6 \%$); $[\alpha]_{\mathrm{D}}^{27}+54\left(c 0.30, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3430(\mathrm{OH}$ and NH$), 1730(\mathrm{C}=0), 1650(\mathrm{NAc}$ and NBz$)$ and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}} \S\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.87-7.40$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.27\left(1 \mathrm{H}, \mathrm{d}, J_{2^{\prime}, \mathrm{NH}} 9.0, \mathrm{~N} H \mathrm{Bz}\right), 6.21\left(1 \mathrm{H}, \mathrm{d}, J_{5, \mathrm{NH}}\right.$ 8.8 , NHAc), 5.04 ($\left.1 \mathrm{H}, \mathrm{dd}, J_{1.2} 5.1, J_{1.5} 5.5,1-\mathrm{H}\right), 4.72(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1,2} 5.1, J_{2,3} 6.4,2-\mathrm{H}\right), 4.58\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 6.4, J_{3.4} 5.9,3-\mathrm{H}\right)$, 4.52 (1 H , ddd, $J_{1.5} 5.5, J_{4,5} 5.1, J_{5 . \mathrm{NH}} 8.8,5-\mathrm{H}$), $4.34(1 \mathrm{H}$, ddd, $\left.J_{1^{\prime} \cdot 2^{\prime}} 4.5, J_{2^{\prime} \cdot \mathrm{NH}} 9.0, J_{2^{\prime} \cdot 3^{\prime}} 15.2,2^{\prime}-\mathrm{H}\right), 4.09\left(1 \mathrm{H}\right.$, ddd, $J_{3.4} 5.9$, $\left.J_{4.5} 5.1, J_{4.0 \mathrm{OH}} 6.6,4-\mathrm{H}\right), 3.02\left(1 \mathrm{H}\right.$, ddd, $J_{1^{\prime}, 2^{\prime}} 4.5, J_{1^{\prime}, 5^{\prime}} 4.0$ and 4.7 , $\left.1^{\prime}-\mathrm{H}\right), 2.76$ ($1 \mathrm{H}, \mathrm{d}, J_{4 . \text { он }} 6.6, \mathrm{OH}$), 2.25-1.10 ($18 \mathrm{H}, \mathrm{m}, 3^{\prime}$-, $4^{\prime}-, 5^{\prime}$ - and $6^{\prime}-\mathrm{H}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{10}$) and $1.94(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$.
The third fraction gave the mono-ester $9 \mathbf{e}(38.7 \mathrm{mg}, 41.9 \%$) as crystals, mp 175-176 ${ }^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 65.0; H, 7.7; $\mathrm{N}, 5.5 \%$); $[\alpha]_{\mathrm{D}}^{27}-35$ (c 0.65, CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3430$ (OH and NH), $1730(\mathrm{C}=\mathrm{O}), 1650$ (NAc and NBz) and 1520 $(\mathrm{NH}) ; \delta_{\mathrm{H}} \S\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.78-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.06(1 \mathrm{H}$, d, $\left.J_{2^{\prime} \cdot \mathrm{NH}} 8.8, \mathrm{~N} H B z\right), 6.56\left(1 \mathrm{H}, \mathrm{d}, J_{5 . \mathrm{NH}} 8.8, \mathrm{~N} H \mathrm{Ac}\right), 4.98(1 \mathrm{H}$, dd, $\left.J_{1.2} 5.1, J_{1.5} 5.5,1-\mathrm{H}\right), 4.72\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 5.1, J_{2.3} 6.6,2-\mathrm{H}\right)$, $4.60\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3} 6.6, J_{3.4} 5.5,3-\mathrm{H}\right), 4.57-4.47(2 \mathrm{H}, \mathrm{m}, 5$ - and $\left.2^{\prime}-\mathrm{H}\right), 4.10\left(1 \mathrm{H}\right.$, ddd, $\left.J_{3.4} 5.5, J_{4.5} 5.1, J_{4.0 \mathrm{OH}} 6.6,4-\mathrm{H}\right), 2.92$ ($1 \mathrm{H}, \mathrm{br} \mathrm{dd}, J 4.0$ and $6.2,1^{\prime}-\mathrm{H}$), 2.88 ($1 \mathrm{H}, \mathrm{d}, J_{4, \mathrm{OH}} 6.6, \mathrm{OH}$), 2.15-1.30 ($18 \mathrm{H}, \mathrm{m}, 3^{\prime}-, 4^{\prime}-, 5^{\prime}-$ and $6^{\prime}-\mathrm{H}_{2}$ and $\left.\mathrm{C}_{6} \mathrm{H}_{10}\right)$ and 1.94 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}$).

Mixture of 2,3-O-cyclohexane-1,1-diyl derivatives 9c and 10c of the respective 1 D - and $1 \mathrm{~L}-(1,2,3,4,5 / 0)$-5-acetamido-1- O [$2 R, 3 R$)-2,3-(cyclohexane-1,1-diyldioxy)-3-ethoxycarbonyl-propanoyl]cyclopentane-1,2,3,4-tetraol and 2,3-O-cyclohexane-1,1-diyl derivative of ($1,2,3,4,5 / 0$)-5-acetamido-1,4-bis- O [$(2 R, 3 R)$-2,3-(cyclohexane-1,1-dioxy)-3-ethoxycarbonyl-propanoyl]cyclopentane-1,2,3,4-tetraol 11c
To a solution of the diol $5(50.4 \mathrm{mg}, 0.186 \mathrm{mmol})$ in THF ($1 \mathrm{~cm}^{3}$) were added $\mathrm{MsCl}\left(16 \mathrm{~mm}^{3}, 0.204 \mathrm{mmol}, 1.1 \mathrm{~mol}\right.$ equiv.), N-methylmorpholine ($51 \mathrm{~mm}^{3}, 0.465 \mathrm{mmol}, 2.5 \mathrm{~mol}$ equiv.), and a catalytic amount of DMAP at $-15^{\circ} \mathrm{C}$. The mixture was stirred for 24 h at $0^{\circ} \mathrm{C}$ and MeOH was added to the solution. The reaction mixture was diluted with EtOAc ($30 \mathrm{~cm}^{3}$), washed successively with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(10 \mathrm{~cm}^{3}\right)$ and saturated aq. $\mathrm{NaHCO}_{3}\left(10 \mathrm{~cm}^{3}\right)$ and dried. Evaporation of the mixture gave a syrupy residue, which was chromatographed on a column of silica gel (3 g) with acetone-toluene ($1: 4, \mathrm{v} / \mathrm{v}$) as eluent to give, first, the bis-ester $11 \mathrm{c}(12.8 \mathrm{mg}, 9.2 \%$) as a syrup (Found: C, 59.1 ; $\mathrm{H}, 7.2 ; \mathrm{N}, 1.7 . \mathrm{C}_{37} \mathrm{H}_{53} \mathrm{NO}_{15}$, requires $\mathrm{C}, 59.1 ; \mathrm{H}, 7.1 ; \mathrm{N}, 1.9 \%$); $[\alpha]_{\mathrm{D}}^{27}-12\left(c 0.82, \mathrm{CHCl}_{3}\right) ; v_{\max }$ (neat) $/ \mathrm{cm}^{1} 3450(\mathrm{NH}), 1760$ ($\mathrm{C}=\mathrm{O}$), $1680(\mathrm{NAc})$ and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}{ }^{\prime \prime}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $6.74\left(1 \mathrm{H}, \mathrm{d}, J_{5, \mathrm{NH}} 9.2, \mathrm{NH}\right), 5.05(1 \mathrm{H}, \mathrm{dd}, J 5.1$ and 5.9 , 1 - or $4-\mathrm{H}), 5.02(1 \mathrm{H}, \mathrm{dd}, J 4.4$ and $5.1,4$ - or $1-\mathrm{H}), 4.95(1 \mathrm{H}, \mathrm{d}, J 4.4$, 2^{\prime} - or $\left.3^{\prime}-\mathrm{H}\right), 4.88\left(1 \mathrm{H}, \mathrm{d}, J 4.4,3^{\prime}-\right.$ or $\left.2^{\prime}-\mathrm{H}\right), 4.86(1 \mathrm{H}, \mathrm{d}, J 5.3$, 2^{\prime} - or $\left.3^{\prime}-\mathrm{H}\right)$, 4.85 ($1 \mathrm{H}, \mathrm{d}, J 5.3,3^{\prime}-$ or $2^{\prime}-\mathrm{H}$), 4.83-4.72 (3 H , $\mathrm{m}, 2-, 3-\mathrm{and} 5-\mathrm{H}), 4.28\left(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.23(2 \mathrm{H}$,

[^0]$\left.\mathrm{q}, J 7.1, \mathrm{OCH}_{2} \mathrm{Me}\right), 1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 1.80-1.37(30 \mathrm{H}, \mathrm{m}$, $\left.3 \times \mathrm{C}_{6} \mathrm{H}_{10}\right), 1.33\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{Me}\right)$ and $1.31(3 \mathrm{H}, \mathrm{t}$, $J 7.1, \mathrm{OCH}_{2} \mathrm{Me}$).
The second fraction gave a mixture ($18.0 \mathrm{mg}, 18.9 \%$) of the mono-esters 9 c and 10c ($\sim 1: 11$) as a syrup (Found: C, 58.2; $\mathrm{H}, 7.6 ; \mathrm{N}, 2.7 . \mathrm{C}_{25} \mathrm{H}_{3} \mathrm{NO}_{10}$ requires $\mathrm{C}, 58.7 ; \mathrm{H}, 7.3 ; \mathrm{N}, 2.7 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{OH}$ and NH$), 1750(\mathrm{C}=\mathrm{O}), 1680(\mathrm{NAc})$ and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}{ }^{\|}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) for the major compound $10 \mathrm{c}: ~ 6.39$ ($1 \mathrm{H}, \mathrm{d}, J_{5 . \mathrm{NH}} 8.8, \mathrm{NH}$), 5.06 (1 H , dd, $\left.J_{1.2} 5.1, J_{1,5} 5.5,1-\mathrm{H}\right), 4.87\left(1 \mathrm{H}, \mathrm{d}, J_{2^{\prime}, 3} .5 .1,2^{\prime}-\right.$ or $\left.3^{\prime}-\mathrm{H}\right)$, $4.84\left(1 \mathrm{H}, \mathrm{d}, J_{2 \cdot 3}, 5.1,3^{\prime}-\right.$ or $\left.2^{\prime}-\mathrm{H}\right), 4.75\left(1 \mathrm{H}, \mathrm{dd}, J_{1,2} 5.1\right.$, $\left.J_{2.3} 6.6,2-\mathrm{H}\right), 4.61\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3} 6.6, J_{3,4} 5.5,3-\mathrm{H}\right), 4.54$ (1 H , ddd, $\left.J_{1.5} 5.5, J_{4.5} 5.1, J_{5 . \mathrm{NH}} 8.8,5-\mathrm{H}\right), 4.28(2 \mathrm{H}, \mathrm{q}, J 7.3$, $\mathrm{OCH}_{2} \mathrm{Me}$), $4.08\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{3.4} 5.5, J_{4.5} 5.1,4-\mathrm{H}\right), 2.04(3 \mathrm{H}, \mathrm{s}$, Ac), 1.80-1.37 ($10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}$) and $1.32(3 \mathrm{H}, \mathrm{t}, J 7.3$, $\mathrm{OCH}_{2} \mathrm{Me}$).

Mixture of 2,3-O-cyclohexane-1,1-diyl derivatives 20c and 21c of the respective 1 L - and $1 \mathrm{D}-(1,2,3,4,5 / 0)$-5-acetamido-1- O -

 [($2 S$)-2-acetoxy(phenyl)acetyl]-4-[($2 R, 3 R$)-2,3-(cyclohexane-1,1-diyldioxy)-3-ethoxycarbonylpropanoyl] cyclopentane-1,2,3,4-tetraolThe mixture ($19.4 \mathrm{mg}, 0.0379 \mathrm{mmol}$) of tartrates 9 c and $\mathbf{1 0 c}$ $(\sim 1: 11)$ was acylated with $(S)-(+)-O$-acetylmandelic acid under standard conditions to give a mixture ($19.8 \mathrm{mg}, 76 \%$) of the esters 20c and 21c ($\sim 1: 11$) as a syrup (Found: C, 61.1; $\mathrm{H}, 6.8 ; \mathrm{N}, 2.0 . \mathrm{C}_{35} \mathrm{H}_{45} \mathrm{NO}_{13}$ requires C, 61.1; H, 6.6; N, 2.0\%); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3400(\mathrm{NH}), 1750(\mathrm{C}=\mathrm{O}), 1680$ (NAc) and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ (inter alia) for the major compound 21c: 7.58-7.30 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 5.99 [1 H, s, PhCH(OAc)CO], $6.47\left(1 \mathrm{H}, \mathrm{d}, J_{5, \mathrm{NH}} 9.2, \mathrm{NH}\right)$ and 2.20 and 1.95 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac}$); for the minor compound 20c: 5.91 $[1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}]$ and 2.20 and 1.98 (each $3 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{Ac})$.

1,2-O-Cyclohexane-1,1-diyl derivatives 22b and 23b of the respective $1 \mathrm{D}-(1,2,3,4 / 5)$-4-acetamido-3-O-[(2R)-2-acetoxy-(phenyl)acetyl]-5-(acetylsulfanyl)cyclopentane-1,2,3-triol and 1D-(1,2,3/0)-4-acetamido-3-O-[(2R)-2-acetoxy(phenyl)acetyl]-cyclopent-4-ene-1,2,3-triol
To a solution of the acetylmandelate $\mathbf{1 0 b}(33.5 \mathrm{mg}, 0.0749$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right.$) were added pyridine ($30 \mathrm{~mm}^{3}, 0.375$ $\mathrm{mmol}, 5 \mathrm{~mol}$ equiv.) and $\mathrm{Tf}_{2} \mathrm{O}\left(38 \mathrm{~mm}^{3}, 0.225 \mathrm{mmol}, 3 \mathrm{~mol}\right.$ equiv.) at $-15^{\circ} \mathrm{C}$. The mixture was stirred for 20 min at the same temp., and was then poured into saturated aq. NaHCO_{3} $\left(10 \mathrm{~cm}^{3}\right)$. The water layer was extracted with $\mathrm{CHCl}_{3}(20$ $\mathrm{cm}^{3} \times 4$), and the organic layers were combined and dried. Evaporation of the mixture gave a syrupy residue, which was dissolved in benzene ($1 \mathrm{~cm}^{3}$). 18-Crown-6 ether ($19.8 \mathrm{mg}, 0.0749$ mmol, 1 mol equiv.) and KSAc ($85.5 \mathrm{mg}, 0.749 \mathrm{mmol}, 10 \mathrm{~mol}$ equiv.) were added to the solution. The reaction mixture was stirred for 2 days at room temp. and was then evaporated to give a residue. Column chromatography on silica gel (3 g) with acetonitrile-toluene ($1: 6, \mathrm{v} / \mathrm{v}$) gave, first, the alkene 23b (5.7 mg , 17.0%) as a syrup (Found: C, 62.2; H, 6.3; N, 3.1. $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{7}$ requires $\mathrm{C}, 62.0 ; \mathrm{H}, 6.1 ; \mathrm{N}, 3.1 \%) ;[\alpha]_{\mathrm{D}}^{27}-38\left(c 1.38, \mathrm{CHCl}_{3}\right)$; $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 3300(\mathrm{OH}$ and NH$), 1750(\mathrm{C}=\mathrm{O}), 1690(\mathrm{NAc})$ and $1550(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.57-7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.37-7.30 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 6.40(1 \mathrm{H}$, br s, NH), $5.88[1 \mathrm{H}, \mathrm{s}$, $\mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}], 5.43\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3} 5.9,3-\mathrm{H}\right), 5.10\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2}\right.$ $\left.5.5, J_{1.5} 2.0,1-\mathrm{H}\right), 4.71\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 5.5, J_{2.3} 5.9,2-\mathrm{H}\right), 2.24$ and $2.12($ each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac})$ and $1.56-1.12\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$.
The second fraction gave the acetylsulfanyl derivative 22b $(25.1 \mathrm{mg}, 66.2 \%$) as a syrup (Found: C, $59.3 ; \mathrm{H}, 6.5 ; \mathrm{N}, 2.7$. $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{8} \mathrm{~S}$ requires C, 59.4; H, 6.2; N, 2.8%); $[\alpha]_{\mathrm{D}}^{27}+11$ (c $0.92, \mathrm{CHCl}_{3}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3300(\mathrm{NH}), 1750(\mathrm{C}=\mathrm{O}), 1680$ (NAc) and $1550(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.57-7.35(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 6.32\left(1 \mathrm{H}, \mathrm{d}, J_{4 . \mathrm{NH}} 9.2, \mathrm{NH}\right), 5.90[1 \mathrm{H}, \mathrm{s}$,
$\mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}], 5.28$ ($\left.1 \mathrm{H}, \mathrm{dd}, J_{2,3} 5.1, J_{3.4} 4.4,3-\mathrm{H}\right), 4.67$ ($1 \mathrm{H}, \mathrm{dd}, J_{1.2} 7.0, J_{2,3} 5.1,2-\mathrm{H}$), $4.60\left(1 \mathrm{H}\right.$, ddd, $J_{3.4} 4.4, J_{4.5} 9.9$, $\left.J_{4 . \mathrm{NH}} 9.2,4-\mathrm{H}\right), 4.52\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 7.0, J_{1.5} 4.4,1-\mathrm{H}\right), 3.86(1 \mathrm{H}$, dd, $J_{1.5} 4.4, J_{4.5} 9.9,5-\mathrm{H}$), 2.37, 2.20 and 1.92 (each $3 \mathrm{H}, 3 \mathrm{~s}$, $3 \times \mathrm{Ac})$ and $1.55-1.14\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$.

1,2- O-Cyclohexane-1,1-diyl derivative D -24 of $1 \mathrm{D}-(1,2,3,4 / 5)$ -4-acetamido-5-(methylsulfanyl)cyclopentane-1,2,3-triol
To a solution of the acetylsulfanyl derivative $\mathbf{2 2 b}(63.1 \mathrm{mg}$, 0.125 mmol) in $\mathrm{MeOH}\left(2 \mathrm{~cm}^{3}\right)$ was added $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ methanolic $\mathrm{NaOMe}\left(0.19 \mathrm{~cm}^{3}, 0.188 \mathrm{mmol}, 1.5 \mathrm{~mol}\right.$ equiv.) at room temp. The mixture was stirred for 30 min at the same temp., and then MeI ($39 \mathrm{~cm}^{3}, 0.624 \mathrm{mmol}, 5 \mathrm{~mol}$ equiv.) was added. The reaction mixture was stirred for 2.5 h at room temp. Evaporation of the mixture gave a residue, which was chromatographed on a column of silica gel (3 g) with acetone-toluene $(1: 4, \mathrm{v} / \mathrm{v})$ as eluent to give the methyl sulfide $\mathrm{D}-24(37.6 \mathrm{mg}$, $\sim 100 \%$) as a syrup [Found: \mathbf{M}^{+}, 301.1357. $\mathrm{C}_{14} \mathrm{H}_{23}{ }^{-}$ $\mathrm{NO}_{4} \mathrm{~S}$ requires $\left.\mathrm{M}, 301.1348\right] ;[\alpha]_{\mathrm{D}}^{24}+19$ (c 1.4, acetone); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3350(\mathrm{OH}$ and NH$), 1650(\mathrm{NAc})$ and 1520 (NH); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 6.11\left(1 \mathrm{H}, \mathrm{d}, J_{5, \mathrm{NH}} 9.1, \mathrm{NH}\right), 4.57$ ($\left.1 \mathrm{H}, \mathrm{dd}, J_{1.2} 4.8, J_{2,3} 6.8,2-\mathrm{H}\right), 4.50\left(1 \mathrm{H}\right.$, dd, $J_{2,3} 6.8, J_{3,4}$ $4.0,3-\mathrm{H}), 4.35$ ($1 \mathrm{H}, \mathrm{ddd}, J_{1,5} 4.0, J_{4.5} 9.1, J_{5 . \mathrm{NH}} 9.1,5-\mathrm{H}$), $4.15\left(1 \mathrm{H}\right.$, ddd, $J_{1,2} 4.8, J_{1.5} 4.0, J_{1.0 \mathrm{H}} 3.2,1-\mathrm{H}$), $3.08(1 \mathrm{H}$, dd, $\left.J_{3,4} 4.0, J_{4.5} 9.1,4-\mathrm{H}\right), 2.80\left(1 \mathrm{H}, \mathrm{d}, J_{1 . \mathrm{OH}} 3.2, \mathrm{OH}\right), 2.19$ $(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}), 2.03(3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{Ac})$ and $1.80-1.35(10 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{10}$).

1D-(1,2,3,4/5)-4-Acetamido-1,2,3-tri- O-acetyl-5-(methyl-

 sulfanyl)cyclopentane-1,2,3-triol (tetra- N, O-acetylmannostatin A) D-25The methyl sulfide $\mathrm{D}-24(17.1 \mathrm{mg}, 0.0567 \mathrm{mmol})$ was treated with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(1 \mathrm{~cm}^{3}\right)$ for 1 h at $50^{\circ} \mathrm{C}$. Evaporation of the mixture gave a residue, which was acetylated conventionally. Column chromatography on silica gel (1 g) with acetonetoluene ($1: 2, \mathrm{v} / \mathrm{v}$) gave the acetate $\mathrm{D}-25(18.1 \mathrm{mg}, 91.9 \%)$ as crystals, mp 122-123 ${ }^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, $48.0 ; \mathrm{H}, 6.3$; $\mathrm{N}, 4.1$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{7} \mathrm{~S}: \mathrm{C}, 48.4 ; \mathrm{H}, 6.1 ; \mathrm{N}, 4.0 \%$); $[\alpha]_{\mathrm{D}}^{27}+16\left(c 0.88, \mathrm{CHCl}_{3}\right) ; v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3300(\mathrm{NH}), 1750$ (OAc), $1650(\mathrm{NAc})$ and $1540(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 5.71$ ($1 \mathrm{H}, \mathrm{d}, J_{4 . \mathrm{NH}} 8.8, \mathrm{NH}$), $5.40\left(1 \mathrm{H}\right.$, dd, $J_{1.2} 5.9, J_{2,3} 3.9,2-\mathrm{H}$), $5.34\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 3.9, J_{3,4} 5.7,3-\mathrm{H}\right), 5.17\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 5.9\right.$, $\left.J_{1.5} 6.8,1-\mathrm{H}\right), 4.54\left(1 \mathrm{H}\right.$, ddd, $J_{3,4} 5.7, J_{4.5} 8.4, J_{4 . \mathrm{NH}} 8.8,4-$ H), $3.11\left(1 \mathrm{H}, \mathrm{dd}, J_{1.5} 6.8, J_{4.5} 8.4,5-\mathrm{H}\right), 2.17(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe})$ and 2.12, 2.08, 2.06 and 2.04 (each $3 \mathrm{H}, 4 \mathrm{~s}, 4 \times \mathrm{Ac}$). The ${ }^{1} \mathrm{H}$ NMR spectrum was very similar to that of an authentic sample. $9 .{ }^{9}$

1D-(1,2,3,4/5)-4-Amino-5-(methylsulfanyl)cyclopentane-1,2,3triol hydrochloride (mannostatin A hydrochloride) D-26
The acetyl derivative of mannostatin A, D-25 ($14.9 \mathrm{mg}, 0.0429$ mmol) was treated with $2 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(1 \mathrm{~cm}^{3}\right)$ for 1.5 h at $80^{\circ} \mathrm{C}$. Evaporation of the mixture gave the hydrochloride D-26 $(9.3 \mathrm{mg}, \sim 100 \%)$ as a syrup, $[\alpha]_{\mathrm{D}}^{21}+6(c 0.46, \mathrm{MeOH})$; $v_{\max }$ (neat)/cm ${ }^{1} 3350\left(\mathrm{OH}\right.$ and $\left.\mathrm{NH}_{2}\right)$ and $1500\left(\mathrm{NH}_{2}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 4.28\left(1 \mathrm{H}, \mathrm{dd}, J_{2,3} 4.0, J_{3,4} 6.6,3-\mathrm{H}\right), 4.10$ (1 H , dd, $J_{1,2} 4.6, J_{2,3} 4.0,2-\mathrm{H}$), 4.01 (1 H , dd, $J_{1,2} 4.6, J_{1,5}$ $7.5,1-\mathrm{H}), 3.55\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 6.6, J_{4.5} 7.2,4-\mathrm{H}\right), 3.11(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1,5} 7.5, J_{4.5} 7.2,5-\mathrm{H}\right)$ and $2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{SMe})$.

1D-(1,2,3,4/5)-4-Amino-5-(methylsulfanyl)cyclopentane-1,2,3-

 triol (mannostatin A) (+)-1The hydrochloride D-26 ($9.3 \mathrm{mg}, 0.0429 \mathrm{mmol}$) was taken up on a column of Dowex $50 \mathrm{~W}-\mathrm{X} 2\left(\mathrm{H}^{+}\right)$resin $\left(1 \mathrm{~cm}^{3}\right)$, which was washed with water and eluted with $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. $\mathrm{NH}_{4} \mathrm{OH}$ to give the free base $(+)-1(7.7 \mathrm{mg}, \sim 100 \%)$ as a syrup, $[\alpha]_{\mathrm{D}}^{28}+8$ (c 0.24 , water); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3350\left(\mathrm{OH}\right.$ and $\left.\mathrm{NH}_{2}\right)$ and 1580 $\left(\mathrm{NH}_{2}\right) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 4.05-3.93(3 \mathrm{H}, \mathrm{m}, 1-, 2-$ and $3-\mathrm{H})$,
$3.02(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 2.81(1 \mathrm{H}, \mathrm{dd}, J 6.2$ and $8.4,4-\mathrm{H})$ and 2.14 ($3 \mathrm{H}, \mathrm{s}, \mathrm{SMe}$).

1,2-O-Cyclohexane-1,1-diyl derivative 27a and 28a of the respective $1 \mathrm{~L}-(1,2,3,4 / 5)-4$-acetamido-3-O-[(2S)-2-acetoxy-(phenyl)acetyl]-5-(acetylsulfanyl)cyclopentane-1,2,3-triol and 1L-(1,2,3/0)-4-acetamido-3-O-[(2S)-2-acetoxy(phenyl)acetyl]-cyclopent-4-ene-1,2,3-triol

The acetylmandelate 9a ($46.8 \mathrm{mg}, 0.105 \mathrm{mmol}$) was converted as in the preparation of compounds 22b and 23b through the triflate into the alkene $28 \mathrm{a}(16.2 \mathrm{mg}, 34.8 \%$) as a syrup (Found: $\mathrm{C}, 62.0 ; \mathrm{H}, 6.6 ; \mathrm{N}, 3.0 . \mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{7}$ requires C, 62.0; $\mathrm{H}, 6.1$; $\mathrm{N}, 3.1 \%) ;[\alpha]_{\mathrm{D}}^{27}+46\left(c 0.59, \mathrm{CHCl}_{3}\right)$, and the acetylsulfanyl derivative 27a ($23.4 \mathrm{mg}, 44.2 \%$) as a syrup (Found: C, 59.6 ; $\mathrm{H}, 6.3 ; \mathrm{N}, 2.8 . \mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{8} \mathrm{~S}$ requires $\mathrm{C}, 59.4 ; \mathrm{H}, 6.2 ; \mathrm{N}, 2.8 \%$); $[\alpha]_{\mathrm{D}}^{27}-11\left(c 0.78, \mathrm{CHCl}_{3}\right)$.

1,2-O-Cyclohexane-1,1-diyl derivative L-24 of 1L-
 (1,2,3,4/5)-4-acetamido-5-(methylsulfanyl)cyclopentane-1,2,3triol

The acetyl derivative $27 \mathrm{a}(23.4 \mathrm{mg}, 0.0462 \mathrm{mmol})$ was converted as in the preparation of sulfanyl compound D-24 into the methyl sulfide $\mathrm{L}-24$ ($11.8 \mathrm{mg}, 84.9 \%$) as a syrup [Found: $\mathrm{M}^{+}, 301.1339$. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$ requires $\left.\mathrm{M}, 301.1248\right]$; $[\alpha]_{\mathrm{D}}^{27}-16$ (c 0.59 , acetone).

1L-(1,2,3,4/5)-4-Acetamido-1,2,3-tri-O-acetyl-5-(methyl-sulfanyl)cyclopentane-1,2,3-triol L-25

The methyl sulfide $\mathrm{L}-24(11.8 \mathrm{mg}, 0.0391 \mathrm{mmol})$ was converted as in the preparation of compound $\mathrm{D}-25$ into the triacetate $\mathrm{L}-25$ ($12.6 \mathrm{mg}, 92.6 \%$) as crystals, $\mathrm{mp}{ }^{122-123^{\circ} \mathrm{C} \text { (from EtOAc) }}$ (Found: C, 48.0; H, 6.2; N, 4.1. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{7} \mathrm{~S}$ requires C, 48.4; $\mathrm{H}, 6.1 ; \mathrm{N}, 4.0 \%$) ; $[\alpha]_{\mathrm{D}}^{29}-14\left(c 0.63, \mathrm{CHCl}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectrum ($270 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) was superposable on that of its enantiomer $\mathrm{D}-25$.

1L-(1,2,3,4/5)-4-Amino-5-(methylsulfanyl)cyclopentane-1,2,3-

 triol hydrochloride l-26The triacetate $\mathrm{L}-25(20.2 \mathrm{mg}, 0.0581 \mathrm{mmol})$ was converted as in the preparation of the free amine hydrochloride $\mathrm{D}-26$ into the hydrochloride $\mathrm{L}-26\left(12.5 \mathrm{mg}, \sim 100 \%\right.$) as a syrup, $[\alpha]_{\mathrm{D}}^{26}$ $-5.5(c 0.48, \mathrm{MeOH})$.

1L-(1,2,3,4/5)-4-Amino-5-(methylsulfanyl)cyclopentane-1,2,3triol (-)-1

The hydrochloride $\mathrm{L}-26(12.5 \mathrm{mg}, 0.0581 \mathrm{mmol})$ was treated as in the preparation of compound $(+)-1$ to give the free base $(-)-1(10.4 \mathrm{mg}, \sim 100 \%)$ as a syrup, $[\alpha]_{\mathrm{D}}^{26}-8(c 0.52$, water $)$.

2,3-O-Cyclohexane-1,1-diyl derivative 29b of $1 \mathrm{D}-(1,2,3,4,5 / 0)$ -5-acetamido-1-O-[(2R)-2-acetoxy(phenyl)acetyl]-4-O-(methoxy-methyl)cyclopentane-1,2,3,4-tetraol

A mixture of the alcohol $9 \mathrm{gb}(59.8 \mathrm{mg}, 0.134 \mathrm{mmol}), N, N-$ diisopropylethylamine ($0.28 \mathrm{~cm}^{3}, 1.61 \mathrm{mmol}, 12 \mathrm{~mol}$ equiv.) and chloromethyl methyl ether ($60 \mathrm{~mm}^{3}, 0.80 \mathrm{mmol}, 6 \mathrm{~mol}$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was stirred for 21 h at reflux. After cooling to room temp., the mixture was diluted with EtOAc (20 cm^{3}), washed successively with $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$, saturated aq. $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ and water ($5 \mathrm{~cm}^{3} \times 2$), and dried. Evaporation of the mixture gave a residue, which was chromatographed on a column of silica gel (3 g) with acetonetoluene ($1: 4, \mathrm{v} / \mathrm{v}$) as eluent to give the ether $\mathbf{2 9 b}(53.8 \mathrm{mg}$, 81.8%) as a syrup (Found: C, $60.8 ; \mathrm{H}, 7.0 ; \mathrm{N}, 2.8 . \mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{9}$ requires $\mathrm{C}, 61.1 ; \mathrm{H}, 6.8 ; \mathrm{N}, 2.9 \%$); $[\alpha]_{\mathrm{D}}^{22}-67$ (c $1.22, \mathrm{CHCl}_{3}$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1750(\mathrm{C}=\mathrm{O}), 1680(\mathrm{NAc})$ and 1520 $(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.53-7.36(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.06(1 \mathrm{H}$, d, $\left.J_{5 . \mathrm{NH}} 9.5, \mathrm{NH}\right), 6.05[1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}], 4.81(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{1,2}=J_{1,5}=5.5,1-\mathrm{H}\right), 4.76-4.63(5 \mathrm{H}, \mathrm{m}, 2-, 3-$ and $5-\mathrm{H}$ and
$\left.\mathrm{OCH}_{2} \mathrm{OMe}\right), 3.94\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 5.5, J_{4.5} 4.8,4-\mathrm{H}\right), 3.38(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OCH}_{2} \mathrm{Me}$), 2.21 and 1.76 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac}$) and 1.85-1.25 $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$.

2,3-O-Cyclohexane-1,1-diyl derivative 31b of 1L-(1,2,3,4,5/0)-5-acetamido-1-O-[(2R)-2-acetoxy(phenyl)acetyl]-4-O-(methoxy-methyl)cyclopentane-1,2,3,4-tetraol
The alcohol 10 b ($110 \mathrm{mg}, 0.246 \mathrm{mmol}$) was etherified as in the preparation of compound 29b to give the ether 31b (99.3 mg , 82.5%) as a syrup (Found: C, 60.8; H, 6.9; N, 2.9. $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{9}$ requires $\mathrm{C}, 61.1 ; \mathrm{H}, 6.8 ; \mathrm{N}, 2.9 \%$); $[\alpha]_{\mathrm{D}}^{22}+44\left(c 0.76, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1750(\mathrm{C}=0), 1680$ (NAc) and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.55-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $6.21\left(1 \mathrm{H}, \mathrm{d}, J_{5, \mathrm{NH}} 9.5, \mathrm{NH}\right), 6.11$ [$1 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}(\mathrm{OAc}) \mathrm{CO}$], $4.77\left(1 \mathrm{H}\right.$, ddd, $\left.J_{1.5} 5.7, J_{4.5} 4.8, J_{5 . \mathrm{NH}} 9.5,5-\mathrm{H}\right), 4.74(1 \mathrm{H}$, dd, $\left.J_{1,2} 5.1, J_{1.5} 5.7,1-\mathrm{H}\right), 4.72-4.62(3 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $\left.\mathrm{OCH}_{2} \mathrm{OMe}\right), 4.64\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3} 5.1, J_{3.4} 5.1,3-\mathrm{H}\right), 3.92(1 \mathrm{H}$, dd, $\left.J_{3.4} 5.1, J_{4.5} 4.8,4-\mathrm{H}\right), 3.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OMe}\right), 2.19$ and 1.86 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{Ac}$) and $1.68-1.21(10 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \mathrm{H}_{10}$).

2,3- O-Cyclohexane-1,1-diyl derivative 29e of 1 D -($1,2,3,4,5 / 0$)-5-acetamido-1- O-[(1R,2S)-2-benzamidocyclohexanecarbonyl]-4-O-(methoxymethyl)cyclopentane-1,2,3,4-tetraol

The alcohol $9 \mathrm{e}(53.7 \mathrm{mg}, 0.107 \mathrm{mmol})$ was etherified as in the preparation of compound 29b to give the ether 29e (57.2 mg , 97.9%) as a syrup (Found: C, 63.5; H, 7.9; N, 4.9. $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{8}$ requires $\mathrm{C}, 64.0 ; \mathrm{H}, 7.4 ; \mathrm{N}, 5.1 \%) ;[\alpha]_{\mathrm{D}}^{22}-110\left(c 1.48, \mathrm{CHCl}_{3}\right)$; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1730(\mathrm{C}=\mathrm{O}), 1680$ and $1660(\mathrm{NAc}$ and NBz) and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}{ }^{* *}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.84-7.35$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and NHBz), 6.42 ($1 \mathrm{H}, \mathrm{d}, J_{5, \mathrm{NH}} 9.5$, NH), 4.88$4.68\left(6 \mathrm{H}, \mathrm{m}, 1-, 2-, 3-\mathrm{and} 5-\mathrm{H}\right.$, and $\left.\mathrm{OCH}_{2} \mathrm{OMe}\right), 4.33(1 \mathrm{H}$, ddd, $J 4.4,9.8$ and $15.0,2^{\prime}-\mathrm{H}$), 3.97 ($1 \mathrm{H}, \mathrm{dd}, J_{3,4} 5.1, J_{4.5} 4.8,4-\mathrm{H}$), $3.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OMe}\right), 3.00\left(1 \mathrm{H}\right.$, br dd, $J 4.4$ and $\left.7.4,1^{\prime}-\mathrm{H}\right)$, 2.29-2.15 ($\left.1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 1.96(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$ and $1.90-1.25(17 \mathrm{H}$, $\mathrm{m}, 3^{\prime}-, 4^{\prime}$ - and $5^{\prime}-\mathrm{Hz}, 6^{\prime}-\mathrm{H}$ and $\mathrm{C}_{6} \mathrm{H}_{10}$).

2,3-O-Cyclohexane-1,1-diyl derivative 31e of 1L-(1,2,3,4,5/0)-5-acetamido-1- O-[(1R,2S)-2-benzamidocyclohe xanecarbonyl]-4-O-(methoxymethyl)cyclopentane-1,2,3,4-tetraol
The alcohol 10e ($25.4 \mathrm{mg}, 0.0507 \mathrm{mmol}$) was etherified as in the preparation of compound 29b to give the ether 31e ($25.6 \mathrm{mg}, 92.7 \%$) as a syrup (Found: C, $63.6 ; \mathrm{H}, 7.7 ; \mathrm{N}, 5.0 \%$); $[\alpha]_{\mathrm{D}}^{22}+42\left(c 1.28, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1730$ $(\mathrm{C}=\mathrm{O}), 1670$ and 1655 (NAc and NBz) and $1520(\mathrm{NH})$; $\delta_{\mathrm{H}}{ }^{* *}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 7.97-7.35(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\mathrm{N} H \mathrm{Bz})$, 6.57 ($\left.1 \mathrm{H}, \mathrm{d}, J_{5 . \mathrm{NH}} 8.8, \mathrm{NH}\right), 4.83-4.67(4 \mathrm{H}, \mathrm{m}, \mathrm{l}-$ and $5-\mathrm{H}$ and $\left.\mathrm{OCH}_{2} \mathrm{OMe}\right), 4.78\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 4.8, J_{2.3} 5.5\right.$, $2-\mathrm{H}), 4.70\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3} 5.5, J_{3.4} 5.5,3-\mathrm{H}\right), 4.30(1 \mathrm{H}$, ddd, $J 4.4,8.0$ and $\left.15.4,2^{\prime}-\mathrm{H}\right), 3.97\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 5.1, J_{4.5} 4.8,4-\mathrm{H}\right.$), $3.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OMe}\right), 3.11$ ($1 \mathrm{H}, \mathrm{brdd}, J 4.4$ and $8.8,1^{\prime}-\mathrm{H}$), $2.20-2.10\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime}-\mathrm{H}\right), 2.05-1.25\left(17 \mathrm{H}, \mathrm{m}, 3^{\prime}-, 4^{\prime}\right.$ - and $5^{\prime}-\mathrm{H}_{2}$, $6^{\prime}-\mathrm{H}$ and $\left.\mathrm{C}_{6} \mathrm{H}_{10}\right)$ and $1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac})$.

Mixture of 2,3-O-cyclohexane-1,1-diyl derivatives 29c and 31c of the respective 1 D - and 1 L - $(1,2,3,4,5 / 0)$-5-acetamido-1- O -[(2R,3R)-2,3-(cyclohexane-1,1-diyldioxy)-3-ethoxycarbonyl-propanoyl]-4-O-(methoxymethyl)cyclopentane-1,2,3,4-tetraol
The mixture of alcohols 9 c and $10 \mathrm{c}(\sim 1: 11 ; 37.5 \mathrm{mg}, 0.0733$ mmol) was etherified as in the preparation of compound 29b to give a mixture of the ethers 29c and 31c ($\sim 1: 11 ; 35 \mathrm{mg}$, 81%) as a syrup (Found: C, $58.0 ; \mathrm{H}, 7.8 ; \mathrm{N}, 2.6 . \mathrm{C}_{2} 7 \mathrm{H}_{41} \mathrm{NO}_{11}$ requires C, $58.4 ; \mathrm{H}, 7.4 ; \mathrm{N}, 2.5 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3450(\mathrm{NH})$, $1760(\mathrm{C}=\mathrm{O}), 1680(\mathrm{NAc})$ and $1515(\mathrm{NH}) ; \delta_{\mathrm{H}} \dagger \dagger(270 \mathrm{MHz}$; CDCl_{3}) the major product 31c: $6.39\left(1 \mathrm{H}, \mathrm{d}, J_{5, \mathrm{NH}} 8.8, \mathrm{NH}\right)$,

[^1]4.93 and 4.88 (each $1 \mathrm{H}, \mathrm{ABq}, \mathrm{J}_{\text {gem }} 6.6, \mathrm{OCH}_{2} \mathrm{OMe}$), 4.87-4.66 ($6 \mathrm{H}, \mathrm{m}, 1^{\prime}-, 2-, 2^{\prime}-, 3-, 4-$ and $5-\mathrm{H}$), 4.29 and 4.24 (each 1 H , $\left.2 \mathrm{dd}, J_{\text {gem }} 3.5, J 7.0, \mathrm{OCH}_{2} \mathrm{Me}\right), 3.98\left(1 \mathrm{H}\right.$, dd, $J_{3,4} 4.8, J_{4.5}$ $4.8,4-\mathrm{H}$), 3.41 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OMe}$), 2.01 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}$), $1.86-1.36$ $\left(20 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{C}_{6} \mathrm{H}_{10}\right)$ and $1.32\left(3 \mathrm{H}, \mathrm{t}, J 7.0, \mathrm{OCH}_{2} \mathrm{Me}\right)$.

2,3-O-Cyclohexane-1,1-diyl derivative $\mathbf{L - 3 0}$ of $\mathbf{1 L -}(1,2,3,4,5 / 0)-$

 5-acetamido-1-O-(methoxymethyl)cyclopentane-1,2,3,4-tetraol (a) To a solution of the ester 29 b ($53.8 \mathrm{mg}, 0.109 \mathrm{mmol}$) in $\mathrm{MeOH}\left(2 \mathrm{~cm}^{3}\right)$ was added $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ methanolic NaOMe $\left(0.1 \mathrm{~cm}^{3}\right)$ at room temp. The mixture was stirred for 30 min at the same temp., neutralized with Amberlite IR 120B (H^{+}) resin, and evaporated. Chromatography on silica gel (1 g) with acetone-toluene ($1: 3, \mathrm{v} / \mathrm{v}$) gave the alcohol $\mathrm{L}-30(32.7 \mathrm{mg}$, 94.8%) as a syrup (Found: C, 57.0; H, 8.2; N, 4.4. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{6}$ requires $\mathrm{C}, 57.1 ; \mathrm{H}, 8.0 ; \mathrm{N}, 4.4 \%$); $[\alpha]_{\mathrm{D}}^{21}+20$ (c 0.85 , acetone); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1650(\mathrm{NAc})$ and $1520(\mathrm{NH}) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $6.36\left(1 \mathrm{H}, \mathrm{d}, J_{5, \mathrm{NH}} 8.4, \mathrm{NH}\right.$), 4.73 and 4.69 (each $\left.1 \mathrm{H}, \mathrm{ABq}, J_{g e m} 6.6, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.64$ ($1 \mathrm{H}, \mathrm{dd}, J_{1,2} 4.6, J_{2,3} 6.2$, $2-\mathrm{H}), 4.55\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3} 6.2, J_{3,4} 5.7,3-\mathrm{H}\right), 4.47$ (1 H , ddd, $J_{1,5}$ $\left.5.1, J_{4,5} 5.3, J_{5 . \mathrm{NH}} 8.4,5-\mathrm{H}\right), 4.00\left(1 \mathrm{H}\right.$, ddd, $J_{3.4} 5.7, J_{4.5}$ $5.3, J_{4.0 \mathrm{OH}} 9.2,4-\mathrm{H}$), 3.98 (1 H , dd, $J_{1.2} 4.6, J_{1,5} 5.1,1-\mathrm{H}$), 3.40 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{OMe}$), $3.02\left(1 \mathrm{H}, \mathrm{d}, J_{4 . \mathrm{OH}} 9.2, \mathrm{OH}\right.$), $2.04(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Ac})$ and $1.85-1.30\left(10 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{10}\right)$.(b) The ester 29 e ($68.8 \mathrm{mg}, 0.126 \mathrm{mmol}$) was similarly O deacylated to give the alcohol $\mathrm{L}-30(37.2 \mathrm{mg}, 93.5 \%)$ as a syrup, $[\alpha]_{\mathrm{D}}^{21}+18.5$ (c 0.84 , acetone).

2,3-O-Cyclohexane-1,1-diyl derivative $\mathbf{D}-30$ of 1 D -

 (1,2,3,4,5/0)-5-acetamido-1-O-(methoxymethyl)cyclopentane-1,2,3,4-tetraol(a) The ester $\mathbf{3 1 b}(46.5 \mathrm{mg}, 0.0946 \mathrm{mmol})$ was O-deacylated as in the preparation of compound L-30 to give the alcohol D-30 ($28.7 \mathrm{mg}, 96.3 \%$) as a syrup (Found: C, $57.0 ; \mathrm{H}, 8.2 ; \mathrm{N}, 4.2 \%$); $[\alpha]_{\mathrm{D}}^{21}-19$ (c 1.15 , acetone).
(b) The ester 31e ($25.6 \mathrm{mg}, 0.0470 \mathrm{mmol}$) was similarly O deacylated to give the alcohol $\mathrm{D}-30(14.8 \mathrm{mg}, \sim 100 \%)$ as a syrup, $[\alpha]_{\mathrm{D}}^{22}-18$ (c 0.42 , acetone).

Mixture of 2,3-O-cyclohexane-1,1-diyl derivatives D- and L-30 of the respective 1 D - and $1 \mathrm{~L}-(1,2,3,4,5 / 0)$-5-acetamido-1- O -(methoxymethyl)cyclopentane-1,2,3,4-tetraol
The mixture ($23.0 \mathrm{mg}, 0.0390 \mathrm{mmol}$) of ethers 29 c and 31c ($\sim 1: 11$) was similarly O-deacylated to give a mixture $(12.3 \mathrm{mg}$, $\sim 100 \%$) of the alcohols D- and $\mathrm{L}-30(\sim 11: 1)$ as a syrup, $[\alpha]_{\mathrm{D}}^{21}$ - 18 (c 0.56, acetone).

Acknowledgements

We express sincere thanks to Mr Ri Jechol for elemental analyses and to Prof. T. Aoyagi (Tokyo Institute of Pharmacy) and Dr H. Morishima (Banyu Pharmaceutical Co. Ltd., Tsukuba, Japan) for the ${ }^{1} \mathrm{H}$ NMR spectra of authentic samples. We also thank Tsuno Food Industrial Co. Ltd. (Wakayama) for providing us with myo-inositol, and Yamakawa Chemical Industry Co. Ltd. (Tokyo) for a gift of the optical resolution reagents: $(S)-(+)$ - and $(R)-(-)$-mandelic acid and $(1 R, 2 S)$ -2-benzamidocyclohexanecarboxylic acid.
$\dagger \dagger$ Primed locants refer to the propanoyl moiety.

References

1 T. Aoyagi, T. Yamamoto, K. Kojiri, H. Morishima, N. Nagai, M. Hamada, T. Takeuchi and H. Umezawa, J. Antibiot., 1989, 42, 883; H. Morishima, K. Kojiri, T. Yamamoto, T. Aoyagi, H. Nakamura and Y. Iitaka, J. Antibiot., 1989, 42, 1008.

2 S. Sakuda, A. Isogai, S. Matsumoto and A. Suzuki, Tetrahedron Lett., 1986, 27, 2475; S. Sakuda, A. Isogai, T. Makita, S. Matsumoto,
K. Koseki, H. Kodama and A. Suzuki, Agric. Biol. Chem., 1987, 51 3251.

3 O. Ando, M. Nakajima, K. Hamano, K. Itoi, S. Takahashi, Y. Takamatsu, A. Sato, R. Enokita, T. Okazaki, H. Haruyama and T. Kinoshita, J. Antibiot., 1993, 46, 1116.

4 C. Uchida, H. Kimura and S. Ogawa, Biomed. Chem. Lett., 1994, 4, 2643.
5 S. J. Angyal and S. D. Gèro, Aust. J. Chem., 1965, 18, 1973; R. Ahluwalia, S. J. Angyal and B. M. Luttrell, Aust. J. Chem., 1970, 23, 1819.
6 S. J. Angyal, M. E. Tate and S. D. Géro, J. Chem. Soc., 1961, 4116.
7 IUPAC Commission on the Nomenclature of Organic Chemistry (CNOC) and IUPAC-IUB Commission on Biochemical Nomenclature (CBN), Pure Appl. Chem., 1974, 37, 285.
8 T. Suami, K. Tadano, S. Nishiyama and F. W. Lichtenthaler, J. Org. Chem., 1973, 38, 3691; K. Tadano, T. Shiratori and T. Suami, Bull. Chem. Soc. Jpn., 1976, 49, 3193.
9 S. Ogawa and Y. Yuming, J. Chem. Soc., Chem. Commun., 1991, 890.

10 N. Chida, Y. Furuno, H. Ikemoto and S. Ogawa, Carbohydr. Res., 1992, 237, 185.
11 Y. Watanabe, A. Oka, Y. Shimizu and S. Ozaki, Tetrahedron Lett., 1990, 31, 2613.
12 C. Uchida, T. Yamagishi and S. Ogawa, J. Chem. Soc., Perkin Trans. 1, 1994, 589.
13 S. B. King and B. Ganem, J. Am. Chem. Soc., 1991, 113, 5089; 1994, 116, 562; B. M. Trost and D. L. Van Vranken, J. Am. Chem. Soc., 1991, 113, 6317; S. Knapp and T. G. Murali Dhar, J. Org. Chem. 1991, 56, 4096; A. Alexakis, J. C. Frutos, P. Mangeney, A. I. Meyers and H. Moorlag, Tetrahedron Lett., 1994, 35, 5125; S. Ogawa and Y. Yuming, Bioorg. Med. Chem., in press.

Paper 5/00285K
Received 17th January 1995 Accepted 27th February 1995

[^0]: § Primed locants refer to the cyclohexanecarbonyl moiety.
 ${ }^{i 1}$ Primed locants refer to the propanoyl moiety.

[^1]: ** Primed locants refer to the cyclohexanecarbonyl moiety.

